USAF & USSF Almanac 2020

Weapons & Platforms

By Aaron M. U. Church

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bombers</td>
<td>112</td>
</tr>
<tr>
<td>Fighter/Attack</td>
<td>114</td>
</tr>
<tr>
<td>Special Ops</td>
<td>117</td>
</tr>
<tr>
<td>ISR/BM/C3</td>
<td>121</td>
</tr>
<tr>
<td>Tankers</td>
<td>128</td>
</tr>
<tr>
<td>Airlift</td>
<td>131</td>
</tr>
<tr>
<td>Helicopters</td>
<td>135</td>
</tr>
<tr>
<td>Trainers</td>
<td>137</td>
</tr>
<tr>
<td>Targets</td>
<td>138</td>
</tr>
<tr>
<td>RPAs</td>
<td>139</td>
</tr>
<tr>
<td>Strategic Weapons</td>
<td>140</td>
</tr>
<tr>
<td>Standoff Weapons</td>
<td>141</td>
</tr>
<tr>
<td>Air-to-Air Missiles</td>
<td>142</td>
</tr>
<tr>
<td>Air-to-Ground Weapons</td>
<td>143</td>
</tr>
<tr>
<td>Space/Satellite Systems</td>
<td>148</td>
</tr>
</tbody>
</table>
BOMBER AIRCRAFT

B-1 LANCER
Long-range conventional bomber

Brief: The B-1B is a conventional, long-range, supersonic penetrating strike aircraft, derived from the canceled B-1A. The B-1A first flew on Dec 23, 1974, and four prototypes were developed and tested before the program was canceled in 1977. The Reagan administration revived the program as the B-1B in 1981, adding 74,000 lb of usable payload, improved radar, and reduced radar cross section, although speed was reduced to Mach 1.2. Its three internal weapons bays can each carry different weapons, and the aircraft’s blended wing/body and variable-geometry wing permit long-range/loiter time. Offensive avionics include terrain following SAR and Sniper ATP to track and target moving vehicles. B-1B made its combat debut over Iraq during Desert Fox in 1998. Integrated Battle Station (IBS) mods are the most comprehensive refresh in the bomber’s history. The three-part program includes Vertical Situation Display (VSD), adding a digital glass cockpit, Fully Integrated Data Link (FIDL) enhancing targeting/LOS/BLOS C2, and Central Integrated Test System (CITS) for real-time simplified troubleshooting. Sustainment Block 16/IBS is slated for fleetwide completion in 2020. FY20 accelerates ADS-B/Mode 5 IFF to meet 2020 FAA airspace compliance mandates. Development includes Fully Integrated Targeting Pod (FITP) to replace the current laptop-controlled system, Multifunctional Information Distribution System/Joint Tactical Radio System (MIDS/JTRS) to improve situational awareness and retargeting abilities, updated BLOS cryptography to sustain connectivity, and bomb rack safety improvements. AFGSC recently reconfigured a B-1 with six external hardpoints and an extended weapons bay to demonstrate its ability to carry large hypersonic or multiple 5,000 lb-class freefall weapons. B-1Bs were briefly grounded for egress safety inspections in 2019, and USAF is looking to return B-1 to a strike instead of CAS role due to speed reductions. The fleet is slated for phased replacement by the B-21 around 2032, and FY21 plans would cut 17 of the least serviceable airframes.

Contractor: Boeing (formerly Rockwell Collins).
First Flight: Oct. 18, 1984 (B-1B).
Inventory: 62.
Production: 104.
Operator: AFGSC, AFMC.
Aircraft Location: Dyess AFB, Texas; Edwards AFB, Calif.; Eglin AFB, Fla.; Ellsworth AFB, S.D.
Active Variant: •B-1B. Upgraded production version of the B-1A.
Dimensions: Span 137 ft (forward sweep) to 79 ft (aft sweep), length 146 ft, height 34 ft.
Weight: Max T-O 477,000 lb.
Power Plant: Four GE Aviation F110-GE-102 turbofans, each 30,780 lb thrust.
Performance: Speed 900+ mph at 5,000 ft, range approx. 7,456 miles (further with air refueling).
Ceiling: More than 30,000 ft.
Armament: 84 Mk 82 (500-lb) or 24 Mk 84 (2,000-lb) general-purpose bombs; 84 Mk 62 (500-lb) or 8 Mk 65 (2,000-lb) Quick Strike naval mines; 30 CBU-87/89 cluster bombs or 30 CBU-103/104/105 WCMOs; 24 GBU-31 or 16 GBU-38 JDMAs/GBU-54 JDAM; 24 AGM-158A JASSM or JASSM-ER LRASM.
Accommodation: Pilot, copilot, and two WSOs (offensive/defensive), on ACES II zero/zero ejection seats.

B-2 SPIRIT
Long-range heavy bomber

Brief: The B-2 is a stealthy, long-range, penetrating nuclear and conventional strike bomber. It is based on a flying wing design combining LO with high aerodynamic efficiency. Spirit entered combat during Allied Force on March 24, 1999, striking Serbian targets. Production was completed in three blocks, and all aircraft were upgraded to Block 30 standard with AESA radar. Production was limited to 21 aircraft due to cost, and a single B-2 was subsequently lost in a crash at Anderson, Feb. 23, 2008. AESA paves the way for future advanced weapons including the Long-Range Standoff (LRSO) missile and B61-12 bomb. The aircraft’s blended fuse-lage/wing holds two weapons bays capable of carrying nearly 60,000 lb in various combinations. Weapons integration and armament upgrades focus on increasing loadout, hardened/buried target strike capability, and improving flexibility. Integration includes the improved B61-12 guided nuclear bomb, JASSM-ER, GBU-57 Massive Ordnance Penetrator, and future weapons, such as the GBU-53 SDB II, GBU-56 Laser JDAM, and JDAM-5000/Hand Target Void Sensing Fuze (HTVSF). Flex Strike mods will feed GPS data to the bays prerelase to thwart jamming, and are required for B61-12. A notional Phase 2 would allow simultaneous nuclear and conventional loadout for increased flexibility. Due to delays, the Defensive Management System upgrade was downsized to an improvement of displays, eliminating some ew sensors to detect ground threats. DMS-M improves survivability in signal-dense, anti-access/area denial (A2/D2) environments, aids situational awareness, and enables real-time threat avoidance. RATS adds radar-aided nuclear precision guidance for GPS-denied strike. Ongoing upgrades include an Adaptable Communications Suite (ACS) for time-sensitive mission updates and Link 16-based, jam-resistant, in-flight retasking. Efforts underway shorten depot maintenance, increase intervals between overhaul, add airspace-compliant CNS/ATM, as well as VLF for nuclear C2 redundancy. USAF plans to add wideband nuclear C2 under the FAB-T program. The B-2 is slated for replacement by the B-21 Raider by 2032. A total of 12 aircraft are considered deployed in the nuclear deterrent role under the New START agreement.

Contractors: Northrop Grumman; Boeing; Vought.
First Flight: July 17, 1989.
IOC: April 1997, Whiteman AFB, Mo.
Inventory: 20.
Operator: AFGSC, AFMC, ANG (associate).
Aircraft Location: Edwards AFB, Calif.; Whiteman AFB, Mo.
Active Variant: •B-2A. Production aircraft upgraded to Block 30 standards.
Dimensions: Span 172 ft, length 69 ft, height 17 ft.
Weight: Max T-O 336,500 lb.
Power Plant: Four GE Aviation F118-GE-100 turbofans, each 17,300 lb thrust.
Performance: Speed high subsonic, range 6,900 miles (further with air refueling).
Ceiling: 50,000 ft.
Armament: Nuclear: 16 B61-7, B61-12, B83, or eight B61-11 bombs (on rotary launchers), Conventional: 80 Mk 82 (500-lb) sea mines, 80 Mk 82 (500-lb) bombs, 80 GBU-38 JDAMs, or 34 GBU-87/89 munitions (on rack assemblies); or 16 GBU-31 JDAMs, 16 Mk 84 (2,000-lb) bombs, 16 AGM-154 JSOWs, 16 AGM-158 JASSMs, or eight GBU-28 LGBs.
Accommodation: Two pilots on ACES II zero/zero ejection seats.
B-52 STRATOFORTRESS
Long-range heavy bomber

Brief: The B-52H is a long-range nuclear/conventional bomber and USAF's primary standoff cruise missile carrier. The YB-52 prototype first flew on April 15, 1952, and Strategic Air Command declared IOC with the B-52A on June 19, 1955. The H model is now the last serving variant of the Stratofortress. Multimission capabilities include long-range precision strike, CAS, air interdiction, defense suppression, and maritime surveillance. Litening and Sniper targeting pods have been added. The B-52 is undergoing several major upgrades to replace key obsolescent components. Combat Network Communications Technology (CONECT) is replacing cockpit displays and comms, adding Link 16, and enabling machine-to-machine tasking/retargeting. The first upgraded aircraft was delivered in 2014. CNS/ATM replaces the B-52’s analog systems with digital systems, and the Internal Weapons Bay Upgrade enables internal carriage of smart weapons. The Conventional Rotary Launcher roughly doubles advanced weapon payloads and reduces drag to increase range. The upgrade was deployed to combat for the first time in Afghanistan in 2017 and supports transition from CALCM to the AGM-158B JASSM-ER long-range cruise missile. Both CONECT and the bay upgrade are slated for fleetwide installation by 2021 and future plans call for integration of the GBU-54 Laser JDAM. Some 31 B-52s were modified to prevent nuclear use under the New START agreement, and a total of 38 aircraft are currently considered “deployed” nuclear delivery platforms under the treaty. Major development includes replacing the radar with a modern, off-the-shelf system, and replacing the TF33 engines with a more modern and efficient power plant. USAF is also upgrading BLOS voice/data crypto, and adding color MFDs to enhance targeting and situational awareness. FY20 launches Tactical Data Link efforts to add low-latency, jam-resistant C2/comms in conjunction with CONECT, as well as GPS and crypto upgrades. The upgraded B-52 will eventually complement the B-21 Raider after retirement of the B-1 and B-2, serving into the 2050s.

Contractor: Boeing.
First Flight: July 20, 1960 (B-52H).
IOC: May 1961 (B-52H).
Production: 744 (incl 102 B-52H).
Inventory: 76.
Operator: AFGSC, AFMC, AFRC.
Aircraft Location: Barksdale AFB, La.; Edwards AFB, Calif.; Minot AFB, N.D.
Active Variants:
• B-52H. Longer-range development of the original B-52A, with more efficient turbofan engines.
Dimensions:
Span 185 ft, length 159.3 ft, height 40.7 ft.
Power Plant: Eight Pratt & Whitney TF33-P-3 turbofans, each 17,000 lb thrust.
Power Plant: Eight Pratt & Whitney TF33-P-3 turbofans, each 17,000 lb thrust.
Performance: Speed 650 mph, range 8,800 miles (further with air refueling).
Ceiling: 50,000 ft.
Armament: Nuclear: 12 AGM-86B ALCMs externally, and eight ALCMs or gravity weapons internally. 12 AGM-158 JASSMs externally, and eight JASSM-ER/MALD/MALD-J internally (upgraded aircraft). Conventional: AGM-86C/D CALCMs, Mk 62 sea mines, Mk 82/84 bombs, CBU-87/89 cluster bombs, CBU-103/104/105 WCDMs, GBU-31/38 JDAMs, AGM-158A JASSMs, and GBU-10/12/28 LGBs, MALD, and MALD-J jammer variant.
Accommodation: Two pilots, navigator, radar navigator, and EWO on upward/downward ejection seats.

Air Power, Space Power, AFA Power

Join nearly 100,000 voices advocating for Air and Space Power, a strong national defense, and benefits for Airmen and Veterans.
• Get the latest news about critical developments in Washington and around the world
• Receive your own copy of Air Force Magazine
• Gain an advocate on Capitol Hill
Memberships start at just $35 per year
Become an Airman for Life — Join the Fight today!

www.AFA.org
A-10 THUNDERBOLT II
Attack, Close-Air Support, Forward Air Control

Brief: The A-10 “Warthog” is a specialized CAS aircraft tasked with interdicting, Forward Air Controller-Airborne (FAC-A), CSAR, and Strike Control & Reconnaissance. It combines a heavy, diverse weapons load with low-level maneuverability, a large combat radius, and long loiter time over the battlefield. The A-10 is capable of carrying up to 16,000 lb of ordnance in addition to its 30 mm cannon which can destroy heavy armor while protecting the pilot in a titanium-armored cockpit. The prototype YA-10A first flew on May 10, 1972, winning USAF’s A-X competition for a new attack aircraft. The A-10A development aircraft first flew Feb. 15, 1975, and A-10As were delivered between October 1975 and March 1984. USAF declared IOC in October 1977. The fleet was modernized under the Precision Engagement Program, resulting in the A-10C which first flew at Eglin in 2005. The A-10C adds color cockpit MFDS, a Helmet Mounted Cueing System (HMCS), hands-on throttle and stick, digital stores management, improved fire-control, GPS-guided weapons, Litening/Sniper pods, advanced data links, and integrated sensors. The A-10C debuted in combat during Iraqi Freedom in 2007. With NVGs and targeting pods the A-10C can operate under 1,000-ft ceilings at night. Current development includes advanced IFF and open architecture software to allow quick integration of future weapons and sensors. The Operational Flight Program (OFP) continuously updates the A-10’s software to integrate advanced weapons and add situational awareness, targeting, navigation, comms, and cyber security improvements. USAF is converting surplus F-15 external tanks to increase endurance and speed cannon-reloading. Ongoing mods include enhanced HMCS and ATP improvements and airspace compliance mods and Lightweight Airborne Recovery System/Combat Survivor Evader Locator (LARS/CSEL) upgrades will enhance aircrew location and recovery. An initial 173 aircraft have been re-winged, and Boeing was awarded a follow-on contract to re-wing the remaining 109 aircraft in August 2018. FY20 launches cockpit display replacement to eliminate analog instruments and add hi-resolution target tracking, SDB-1 integration, directional audio threat cueing. UHF/ VHF comm modernization, and ethernet to enable EW upgrades. USAF plans to retain the fleet through 2030 or beyond but requested to retire 44 airframes starting in FY21.

Contractors: Fairchild Republic (Lockheed Martin); Boeing (re-wing).

First Flight: Jan. 20, 2005 (A-10C).

Delivered: 2006-2012 (A-10C).

IOC: September 2007 (A-10C).

Production: 713.

Inventory: 281.

Operator: ACC, AFMC, PACAF, ANG, AFRC.

Aircraft Location: Barksdale AFB, La.; Boise Air Terminal, Idaho; Davis-Monthan AFB, Ariz.; Eglin AFB, Fla.; Fort Wayne Arpt., Ind.; Martin State Arpt., Md.; Moody AFB, Ga.; Nellis AFB, Nev.; Osan AB, South Korea; Selfridge ANGB, Mich.; Whiteman AFB, Mo.

Active Variant: A-10C. Upgraded version of the A-10A ground attack aircraft.

Dimensions: Span 57.5 ft, length 53.3 ft, height 14.7 ft. Weight: Max T-O 55,000 lb.

Power Plant: Two GE Aviation TF34-GE-100 turbofans, each 9,065 lb thrust.

Performance: Speed 518 mph, range 800 miles (further with air refueling).

Ceiling: 45,000 ft.

Armament: One externally mounted 30 mm, seven-barrel GAU-8/A cannon (1174 rd of high-explosive/incendiary (HEI) or HEI/armor-piercing incendiary; four AIM-9 Sidewinders, AGM-65 Mavericks, laser-guided rockets, most free-fall or guided air-to-surface weapons in USAF inventory, and ECM pods.

Accommodation: Pilot on ACES II zero/zero ejection seat.

F-15 EAGLE
Air superiority fighter

Brief: The F-15 Eagle was the world’s dominant, supersonic, all-weather, day/night air-superiority fighter for more than 30 years. The F-15A first flew on July 27, 1972, and F-15A/Bs were delivered between 1974 and 1979, attaining IOC in September 1975. F-15C/Ds began replacing F-15A/Bs in 1979 and offered superior maneuverability, acceleration, range, weapons, and avionics. The C/D incorporates internal EW countermeasures and an added 2,000 lb of internal fuel (with provision for CFTs). The aircraft accounted for 34 of 37 USAF air-to-air kills during its combat debut in Desert Storm. The final 43 production aircraft received the F-15E’s APG-70 radar, and the following Multistage Improvement Program enhanced its tactical capabilities. The F-15C/D fleet is undergoing comprehensive modernization to enable it to fight in contested airspace, including new AESA radar and advanced self-defenses. The first APG-63(V)3 AESA-modified F-15 was delivered in 2010, and the Eagle Passive/Active Warning Survivability System (EPAWSS) development contract was awarded in 2016. EPAWSS first replaces the current defensive system on a total of 214 aircraft, followed by a second phase to add towed decoy/angled countermeasures. USAF is also developing and procuring 100 belly mounted Infrared Search and Track (IRST) pods to discreetly engage targets without radar emissions. Ongoing upgrades include advanced fourth-to-fifth-generation aircraft data links, Multifunctional Information Distribution System/Joint Tactical Radio System (MIDS/JTRS) jam-resistant Link 16 networking, AESA-compatible digital cockpit displays (common with the F-15E), mandated airspace compliance mods, and jam-resistant Mode 5 IFF. The fleet averages 8,300 flying hours and suffers performance-limiting structural problems requiring wing/foward fuselage SLEP. USAF announced FY20 plans to procure the first six of up to 144 new-build F-15EX to begin replacing the F-15C/D. The new version is based on the F-15QA built for Qatar, but incorporating EPAWSS and USAF-specific software from the outset. A pair of F-15EX will begin flight testing within the next two years. DOD European Deterrence Initiative funds continue to retain F-15C/Ds at Lakenheath to augment allied air superiority due to tensions with Russia.

Contractors: McDonnell Douglas (now Boeing); BAE Systems (EPAWSS); Raytheon (AESA); Rockwell Collins (MIDS/JTRS).

First Flight: Feb. 26, 1979 (F-15C).

Delivered: 1979-85 (F-15C/D).

IOC: 1979 (F-15C/D).

Production: 874.

Inventory: 211 (F-15C); 23 (F-15D).

Operator: ACC, AFMC, PACAF, USAFE, ANG.

Aircraft Location: Barnes Arpt., Mass.; Eglin AFB, Fla.; Fresno ANGB, Calif.; Jacksonville Arpt., Fla.; Kadena AB, Japan; Klamath Falls (Kingsey Field), Ore.; NAS JRB New Orleans, La.; Portland Arpt., Ore.; RAF Lakenheath, U.K.

Active Variants:
- **F-15C:** Upgraded version of the single-seat F-15A.
- **F-15D:** Upgraded version of the two-seat F-15B.
- **F-15EX:** Future F-15C/D replacement based on the F-15QA.

Dimensions: Span 42.8 ft, length 63.3 ft, height 18.7 ft. Weight: Max T-O 68,000 lb.

Power Plant: Two Pratt & Whitney F100-PW-220 turbofans, each 23,450 lb thrust; or two P&W F100-PW-229 turbofans with afterburners, each 29,000 lb thrust.

Performance: Speed Mach 2.5, ferry range 2,878 miles (3,450 miles with CFTs and three external tanks; further with air refueling).

Ceiling: 60,000 ft.

Armament: One internally mounted M61A1 20 mm six-barrel cannon (940 rd); four AIM-9 Sidewinders and four AIM-120 AMRAAMs, or eight AIM-120s. In a one-time test, an Eagle successfully launched an anti-satellite missile.

Accommodation: Pilot (C); two pilots (D); on ACES II zero/zero ejection seats.
F-15E STRIKE EAGLE

Multirole fighter

Brief: F-15E is an upgraded, two-seat, all-weather F-15 capable of deep interdiction/attack, tactical nuclear delivery, and air-to-air combat. Strike Eagle is capable of sustaining nine Gs throughout the flight envelope. It first saw combat in Desert Storm in 1991. F-15E’s large, varied load of precision weapons and 20 mm cannon gives it potent ground attack capability. Radar-guided and IR-homing missiles give it an additional air-to-air capability. Its advanced cockpit controls and displays include a wide-field-of-view HUD and helmet mounted cockpit-cueing, and its avionics permit all-weather day/night engagement. The F-15E carries LANTIRN, Sniper, and Littening ATPs on dedicated pylons. The "Dragon's Eye" SAR pod fielded in 2009 provides all-weather surveillance/reconnaissance capability. F-15Es are equipped with Link 16 and BLOS satcom. The Strike Eagle is undergoing major avionics modernization, centered on the new APG-82(V)1 AESA radar. The Eagle Passive/Active Warning Survivability System (EPAWS) is a second major effort to replace its obsolete self-defense suite. Software is continuously updated on a two-to-three-year cycle, integrating new mission capabilities as part of the Operational Flight Program in tandem with the F-15C/D. Ongoing avionics upgrades include Mode 5 IFF, Joint Helmet Mounted Cueing System (JHMCS), ATP improvements, and radar enhancements to counter high-end electronic threats. Major development includes EAPAWS, MIDS/JTRS to enable higher capacity, jam-resistant Link 16, and new central computer and cockpit displays (in common with the F-15C/D). Future weapons include SDB II and enhanced the B61-12 guided nuclear freefall bomb. FY20 starts digital color displays for both pilot and CSO to improve weapons included SDB II and enhanced the B61-12 guided nuclear freefall bomb. FY20 starts digital color displays for both pilot and CSO to improve weapon planning and debrief. Targeting and prevent fratricide, and Data Transfer Module replacement to improve flight planning and debrief.

Contractors: McDonnell Douglas (now Boeing); BAE Systems (EPAWS); Raytheon (AESA).

First Flight: Dec. 11, 1986.

Delivered: April 1988-2004.

IOC: September 1989.

Production: 236.

Inventory: 783 (F-16C); 155 (F-16D).

Aircraft Location: ACC, AETC, AFMC, USAFE.

Operator: ACC, AFMC, USAFE.

Weight: Max T-O 87,000 lb.

Power Plant: Two Pratt & Whitney F100-PW-229, each 23,450 lb thrust; or two F100-PW-229 turbofans with afterburners, each 29,000 lb thrust.

Performance: Speed Mach 2.5, ferry range 2,400 miles with CFTs and three external tanks (further with air refueling).

Ceiling: 50,000 ft.

Armament: One internally mounted M61A1 20 mm six-barrel cannon (500 rds); four AIM-9 Sidewinders and four AIM-120 AMRAAMs or eight AIM-120s; most air-to-surface weapons in USAF inventory (nuclear and conventional) and ECM pods.

Accommodation: Pilot and WSO on ACES II zero/zero ejection seats.

F-16 FIGHTING FALCON

Multirole fighter

Brief: The F-16 is a lightweight multirole fighter capable of air-to-air, CAS, SEAD, interdiction, FAC-A, tactical nuclear delivery and all-weather strike missions. The "Viper" makes up roughly half the fighter inventory, carries the majority of PGMs in service, and is one of the most maneuverable fighters ever built. The prototype YF-16 first flew Feb. 2, 1974 competing in the USAF Lightweight Fighter competition. After selection, F-16A flew on Dec. 8, 1976, followed by the two-seat F-16B on Aug. 8, 1977. Deliveries began in August 1978, and USAF declared F-16A IOC in October 1980. F-16C/D deliveries began at Block 25 in 1984, adding the APG-68 radar and AMRAAM missile as well as cockpit, airframe, and avionics improvements. Block 30/32 added the HARM missile and more powerful engines, and Block 40/42 introduced the terrain following LANTIRN pod and wide-angle HUD for high-speed night/all-weather penetration. These airframes boasted higher take-off weight and G-limits and an expanded flight envelope starting in 1988. Block 50/52 was introduced to replace the F-4G in the "Wild Weasel" SEAD-role mounting the HARM missile, longer-range radar, and even higher performance engines. USAF debuted the F-16 in combat during Desert Storm 1991 and scored its sole air-to-air kill during Southern Watch on Dec. 27, 1992. Most upgrades are managed in Pre-Block (Blocks 25-32) and Post-Block (Blocks 40-52) tranches. All Blocks are now cockpit-standardized with new color MFD, modular mission computer, Helmet Mounted Integrated Targeting (HMIT), and Link 16. Automatic Ground Collision Avoidance System (A-GCAS) has saved eight F-16s and nine pilots since introduction in 2014. Efforts are underway to add midair avoidance fleetwide by 2022. Some 72 NORAD alert F-16s are receiving AESA radar under urgent requirements to combat cruise missile threats to the homeland. An additional 300 aircraft will receive AESA through FY24. JASSM-ER integration is planned in FY20, and development encompasses mission computer, sensor, self-defense, comm, and digital RWR. Ongoing mods cover Slep, MIDS/JTRS for higher capacity, jam-resistant Link 16, Aggressor improvements, and Mode 5 IFF. Lockheed Martin moved production/support from Fort Worth, Texas, to Greenville, S.C., in 2019, and the Vermont ANG flew its final F-16 sortie that April.

Contractors: General Dynamics (now Lockheed Martin); Northrop Grumman (radiator).

First Flight: June 19, 1984 (F-16C).

Delivered: July 13, 1984-2005 (F-16C/D).

IOC: 1981 (Block 25-32); 1989 (Block 40/42); 1994 (Block 50/52).

Production: 2,206.

Inventory: 783 (F-16C); 155 (F-16D).

Operator: ACC, AETC, AFMC, PACAF, USAFE, ANG, AFRC.

Aircraft Location: Aviano AB, Italy; Edwards AFB, Calif; Eglin AFB, Fla; Eielson AFB, Alaska; Holloman AFB, N.M.; Homestead ARB, Fla.; Kunsan AB, South Korea; Luke AFB, Ariz.; Misawa AB, Japan; NAS JRB Fort Worth, Texas; Nellis AFB, Nev.; Osan AB, South Korea; Shaw AFB, S.C.; Spangdahlem AB, Germany; and ANG in Alabama, Arizona, Colorado, District of Columbia (flying from Maryland), Minnesota, New Jersey, Ohio, Oklahoma, South Carolina, South Dakota, Texas, Wisconsin.

Active Variants:

- **F-16C/D Block 30/32.** Multinational Staged Improvement Program II upgraded with new engines, flown by ANG, AFRC, and test/aggressor units.
- **F-16CG Block 40/42.** Optimized for night/all-weather attack.
- **F-16CI Block 50/52.** Optimized for SEAD with long-range radar, engines, and weapons.
F-22 RAPTOR
Air superiority/multirole fighter

Brief: The F-22 is a stealthy, penetrating, air dominance, and multirole attack fighter built for day, night, and adverse weather, full-spectrum operations. The world’s most advanced fighter, it combines stealth, supercruise, and high maneuverability. Its integrated avionics and data links permit simultaneous multitarget engagement. Advanced flight controls and thrust-vectoring high-performance engines enable great maneuverability. Features include six LCD color cockpit displays, APG-77 radar, an EW system with RWR and missile launch detection, JTIDS, IFF, laser gyroscope inertial reference, and GPS. The prototype YF-22 first flew as an EW system with RWR and missile launch detection, JTIDS, IFF, laser gyroscope inertial reference, and GPS. The prototype YF-22 first flew as part of USAF’s Advanced Tactical Fighter competition on Sept. 29, 1990, followed by the flight of the first F-22 test aircraft in 1997. The Raptor flew its first operational sortie during Noble Eagle in 2006 and debuted in combat striking Islamic State group ground targets during Inherent Resolve in 2015, followed by USAF’s F-35A in 2016, and the Navy’s F-35C on Feb. 28, 2019. An Israeli Air Force F-35I “Adir” drew first blood, hitting Iranian targets in Syria in May 2018, followed by USAF’s initial combat deployment in April 2019 as part of Inherent Resolve. Development, production, and operations are being pursued concurrently, requiring rolling retrofits to standardize the fleet. Block 3i software upgrades improved upon the baseline Block 2B software, adding 89 percent of the code needed for full-combat capability starting in 2015. The current production/retrofit Block 3F software delivered full combat capability and added a range of precision guided munitions starting in 2018. FY20 funds developing the next Block 4 iteration, which will add weapons including the nuclear B61-12 and SDB II guided munitions in 2020. The F-35B reached IOC in 2015, followed by USAF’s F-35A in 2016, and the Navy’s F-35C on Feb. 28, 2019. An Israeli Air Force F-35I “Adir” drew first blood, hitting Iranian targets in Syria in May 2018, followed by USAF’s initial combat deployment in April 2019 as part of Inherent Resolve. Development, production, and operations are being pursued concurrently, requiring rolling retrofits to standardize the fleet. Block 3i software upgrades improved upon the baseline Block 2B software, adding 89 percent of the code needed for full-combat capability starting in 2015. The current production/retrofit Block 3F software delivered full combat capability and added a range of precision guided munitions starting in 2018. FY20 funds developing the next Block 4 iteration, which will add weapons including the nuclear B61-12 and SDB II, sensors, improved EW, and maritime strike capabilities. Dubbed Continuous Capability Development and Delivery (C2D2), Block 4 will correct deficiencies discovered in concurrent development/testing and add future capabilities. USAF is holding to a lower delivery rate until Block 4 production begins to minimize retrofit costs. Initial operational testing began in 2018 and completion has slipped to early 2021 or beyond, delaying full-rate production. International development partner Turkey was expelled from the program in 2019 for procuring advanced Russian air-defense systems that threaten F-35 capabilities. USAF completed both full-scale durability testing as well as a Congressionally mandated CAS trial evaluating its ability to replace the A-10 in 2019 and is working to raise fleetwide mission capable rates from 65 percent to 80 percent. Fielded F-35As are currently capable of interdiction, basic CAS, and limited SEAD, and FY20 funds procure 60 F-35As and materials for 48 aircraft in FY21. The ANG received its first F-35 assigned to the 158FW at Burlington Arpt., Vt., on Sept 19, 2019.

Contractors: Lockheed Martin; BAE Systems; Northrop Grumman; Pratt & Whitney (engines).
Delivered: April 2011-present.
Production: Planned: 1,783 (USAF F-35A).
Inventory: 203 (USAF).
Operator: ACC, AETC, AFMC, AFRC (associate), ANG. Planned: PACAF, USAFE.
AC-130J GHOSTRIDER

Attack

Brief: The AC-130J is a CAS, air interdiction, and armed reconnaissance platform optimized for convoy escort, point defense, and supporting urban combat. The next-generation gunship is based on a highly modified MC-130J, fitted with a modular precision strike package and wing-mounted weapons. The AC-130J is designed to provide ground forces a persistent direct-fire platform. PSP includes a mission management console, robust communications suite, two EO/IR sensors, advanced fire-control equipment, PGM delivery capability, and trainable canons. The initial Block 10 was superseded by the Block 20, adding a 105 mm gun, laser guided SDB, side-mounted pilot tactical display, and Large Aircraft Infrared Countermeasures (LAIRCM). Airframes are delivered as MC-130Js and modified to gunship standards. The airframe is then upgraded and managed in common with the HC/MC-130J, receiving Block 8.1 avionics upgrades (including airspace compliance) along with the baseline C-130J. SOF-specific enhancements are rapidly developed and integrated in response to operational requirements. The first Block 20 was delivered to Hurlburt for operational testing in 2016 and deemed operationally effective for most CAS/interdiction taskings in April 2018. Post-initial operational test upgrades will result in Block 20+30 configuration. Significant mods include software updates to improve gun accuracy, wing-mounted Hellfire and GBU-69 Small Glide Munitions, a permanent CSO cockpit workstation, EW/self-defensive upgrades, and bubble-type observation windows. The first Block 30 aircraft was delivered for testing March 12, 2019. FY20 funds delivery/conversion of five airframes and continues the multyear contract for 23 combined AC/ MC-130J airframes. Development includes a high-energy laser weapon planned for demonstration in 2022, radio frequency countermeasures to detect, locate, and respond to threats, IR suppression, and PSP and EO/IR sensor improvements. Enhanced all-weather strike capability and sensors will enable future threat cloud engagement. An AC-130J from Hurlburt’s 73rd Special Operations Squadron deployed to Afghanistan in late June 2019, marking the type’s first operational use.

Contractor: Lockheed Martin.

First Flight: Jan. 31, 2014.

Delivered: July 29, 2015-present.

IOC: Sept. 30, 2017.

Production: 12 (37 to be converted from new-build MC-130Js).

Inventory: 15.

Operator: AFSOC.

Aircraft Location: Hurlburt Field, Fla.

Active Variants:

- **AC-130J Ghostrider Block 20.** Production standard gunship with additional 105 mm gun.
- **AC-130J Ghostrider Block 30.** Production aircraft with post operational test upgrades.

Dimensions: Span 132.6 ft, length 97.8 ft, height 38.5 ft.

Weight: Gross 155,000 lb.

Power Plant: Four Allison T56-A-15 turboprops, each 4,910 shp.

Performance: Speed 300 mph; range 1,300 miles (further with air refueling).

Ceiling: 25,000 ft.

Armament: One 25 mm GAU-22/A cannon; standard internal loadout: two AIM-120 AMRAAMs and two GBU-31 JDAMs.

Accommodation: Two pilots, two CSOs, three gunners (four, with inclusion of 105 mm gun).

AC-130U SPOOKY/II

Attack

Brief: AC-130U is a gunship-modified C-130H optimized for CAS, interdiction, armed reconnaissance, convoy escort, strike coordination, overwatch, and point defense. The “Spooky” moniker salutes the original AC-47 gunships fielded during the Vietnam conflict. The fleet is modified with electronic and EO sensors, fire-control systems, enhanced navigation, sophisticated comms, defensive systems, and in-flight refueling capability. All AC-130U weapons can be subordinated to the APQ-180 digital fire-control radar, FLIR, or all-light-level television (ALLTV) for adverse weather attack operations. Rockwell Collins converted the initial 13 AC-130Us between 1994 and 1995, and Boeing converted four additional aircraft under the “Plus 4” program starting in 2001. AFSOC retired a single, nonstandard AC-130U in 2015 and held the fleet at 16 aircraft until restarting phaseout in FY18. Recent upgrades include Enhanced Situational Awareness (ESA) mods to provide near real-time intel and data fusion of threat detection, avoidance, geolocation, and adversary-emitter identification. AFSOC also replaced obsolescent mission computers and EO/IR sensors with a new high-definition suite. AC-130Us are undergoing center wing box replacement/structural mods in common with the C-130H fleet to extend service life/meet operational demands until replacement by the AC-130J. Two 1st Special Operations Wing aircraft completed the type’s final planned combat deployment, returning to Hurlburt from CENTCOM on July 8, 2019.

Contractors: Lockheed Martin (airframe); Boeing (formerly Rockwell).

First Flight: Dec 20, 1990.

Delivered: July 1, 1994-2007.

IOC: 1996.

Production: 17.

Inventory: Seven.

Operator: AFSOC.

Aircraft Location: Hurlburt Field, Fla.

Active Variants:

- **AC-130U Spooky II.** Third-generation gunship based on C-130H.

Dimensions: Span 132.6 ft, length 97.8 ft, height 38.5 ft.

Weight: Gross 155,000 lb.

Power Plant: Four Allison T56-A-15 turboprops, each 4,910 shp.

Performance: Speed 300 mph; range 1,300 miles (further with air refueling).

Ceiling: 25,000 ft.

Armament: One 25 mm Gatling gun, plus one 40 mm and one 105 mm cannon.

Accommodation: Two pilots, navigator, flight engineer, fire-control officer, EWO, TV operator, IR detection set operator, loadmaster, four aerial gunners.
AC-130W STINGER II

Attack, armed reconnaissance

Brief: The AC-130W is a gunship-modified C-130H optimized for CAS, interdiction, armed reconnaissance, convoy escort, strike coordination, overwatch, and point defense. AC-130Ws also provide strike coordination, nontraditional ISR, and C2. PSP mod includes a mission management console, communications suite, and flight-deck hardware. Airframes are significantly modified with improved navigation, threat detection, countermeasures, comms, and a standoff Precision Strike Package. The aircraft is entirely distinct from the retired the AC-130H Spectre. The airframes were originally converted as MC-130W Combat Spear for SOF infiltration/exfiltration and in-flight refueling. They were redesignated Dragon Spear with the addition of the roll on/roll off PSP, filling a need for more gunships in 2010. The aircraft was rebranded AC-130W Stinger II after further enhancements in 2012. AC-130) will eventually replace the AC-130W fleet, which averages more than 25 years old. Recent upgrades include Enhanced Situational Awareness (ESA) for near-real-time intel and data fusion including threat detection, avoidance, geolocation, and adversary-emitter identification. IR suppression, and the 105 mm gun (in common with the AC-130U/J) are also recent adds. The SDB was added in 2012 and integration efforts include Laser Guided SDB (LSDB) and GBU-69B Small Glide Munition (instead of continued Hellfire integration). Developments and upgrade include PSP and EO/IR sensor improvements and other low-cost mods. A single aircraft will be modified with a high-energy laser (in place of the 30 mm gun) to develop future AC-130J armament.

Contractor: Lockheed Martin.

First Flight: Circa 2006 (Combat Spear).

Delivered: November 2010 (Dragon Spear).

IOC: 2010 (Dragon Spear).

Production: 12 (converted).

Inventory: 10.

Operator: AFSOC.

Aircraft Location: Cannon AFB, N.M.

Active Variant:

- AC-130W Stinger II. Converted MC-130W armed with PSP and PGMs.

- **Dimensions:** Span 132.6 ft, length 98.8 ft, height 38.5 ft.

- **Weight:** Max T-O 155,000 lb.

- **Power Plant:** Four Allison T56-A-15 turboprops, each 4,910 shp.

- **Performance:** Speed 300 mph, range 2,875 miles.

- **Ceiling:** 25,000 ft.

- **Accommodation:** Two pilots, two CSOs, flight engineer, two special-mission aviators.

C-145 SKYTRUCK

Foreign training and light mobility

Brief: The C-145 is a STOL multipurpose utility and SOF proficiency training aircraft based on the Polish-built PZL Mielec M-28 Skytruck. The high-wing STOL aircraft features nonretractable landing gear for austere operations. USSOCOM assets are operated by AFSOC as a nonstandard fleet, initially supporting small combat teams. The aircraft first deployed in 2011 to Afghanistan. It is reconfigurable for 2,400 lb of cargo airdrop, casualty evacuation, CSAR, and humanitarian missions. C-145As later shifted to partnership capacity building Aviation Internal Defense (AvFID) missions. AFSOC now uses contract aircraft to provide partner countries with more tailored assistance and opted to cut the fleet from 16 to the current five aircraft in 2018, supplying surplus aircraft to several partners, including NATO ally Estonia. C-145s now provide aircrcrew proficiency for combat aviation advisers.

Contractor: PZL Mielec (Lockheed Martin/Sikorsky subsidiary).

First Flight: July 1993 (PZL M-28).

Delivered: 2009-2013.

IOC: N/A.

Production: 16.

Inventory: Five, USSOCOM-owned.

Operator: AFSOC, AFRC (associate).

Aircraft Location: Duke Field, Fla.

Active Variant:

- C-145A. Militarized civilian M-28 Skytruck used for SOF support and training.

- **Dimensions:** Span 72.3 ft, length 43 ft, height 16.1 ft.

- **Weight:** Max T-O 16,534 lb.

- **Power Plant:** Two Pratt & Whitney PT6A-65B turboprops, 1,100 shp.

- **Performance:** Speed 256.5 mph, range 1,161.5 miles.

- **Ceiling:** 25,000 ft.

- **Accommodation:** Two pilots, one loadmaster. **Load:** 16 passengers or 10 paratroopers; up to four litters; max cargo 5,000 lb.

C-146 WOLFHOUND

Multimission mobility

Brief: The C-146 provides flexible, responsive airlift for special operations teams operating from austere and semiprepared airfields worldwide. Wolfhound is based on the German-built Dornier 328 regional airliner and was purchased by USSOCOM, modified by Sierra Nevada Corp., and designated C-146. The aircraft are operated by AFSOC as a nonstandard fleet providing direct support to SOF teams worldwide, often from austere airfields. Modifications include ARC-231, PRG-120, and Indium communications suite, troop/cargo-capable cabin, casualty evacuation capability, NVG compatibility, and STOL/austere operations enhancements. The aircraft first deployed in support of USAFRICOM in 2011. Recent upgrades include navigation enhancements to permit ops in GPS-degraded environments.

Contractors: Fairchild-Dornier; Sierra Nevada Corp.

First Flight: December 1991 (Do 328).

Delivered: 2011-2017.

IOC: N/A.
Production: 20 (converted).
Inventory: 20, USSOCOM-owned.
Operator: AFSOC.
Aircraft Location: Cannon AFB, N.M.; Duke Field, Fla.
Active Variant:
- C-146A, Preowned civil Dornier 328 modified for SOF airlift.
Dimensions: Span 69.6 ft, length 68.8 ft, height 23.8 ft.
Weight: Max T-O 30,843 lb.
Power Plant: Two Pratt & Whitney 119C turboprops, 2,150 shp.
Performance: Speed 335 mph, range 2,070 miles (2,000 lb cargo).
Ceiling: 31,000 ft.
Accommodation: Two pilots, one loadmaster. Load: 27 passengers; up to four litters; max cargo 6,000 lb.

CV-22 OSPREY
Multimission lift

Brief: The CV-22 is a medium-lift vertical takeoff and landing (VTOL) tiltrotor, primarily used for clandestine long-range, all-weather penetration to insert, recover, and support SOF teams in hostile, denied, and politically sensitive areas. Derived from the V-22, which flew in prototype form on March 19, 1989, USAF CV-22Bs are equipped with a fully integrated precision TF/TAR radar navigation, digital cockpit management system, FLIR, integrated NVG/HUD, digital map system, robust self-defense systems, and secure anti-jam comms. The CV-22 can conduct shipboard and austere forward operations. It is capable of operating in nuclear, biological, and chemical (NBC) warfare conditions. CV-22s first deployed to Africa in November 2008 and debuted in combat in Iraq in 2009. AFSOC is retrofitting the CV-22 to Block 20 standards, in common with USMC MV-22s. Mods include new cabin lighting, color helmet mounted displays, IR searchlight, lightweight ballistic armor, EW upgrades, avionics, self-defense improvements, weapons integration, and ISR and situational awareness enhancements. Silent Knight TF/TAR radar will replace the current radar with a stealthier, low-altitude, night/all-weather navigation radar. Development includes improving rapid, long-distance self-deployment capabilities, reducing engine dust/debris ingestion, as well as adding helmet-cued forward-firing weapons for self-defense. Europe-based CV-22s are slated to shift from RAF Mildenhall to Spangdahlem. Under the current multiyear contract, USAF’s final CV-22 is slated for delivery in 2022, and the Navy recently opted for the new CMV-22B to replace its C-2 Greyhound Carrier Onboard Delivery (COD) fleet.

Contractors: Boeing; Bell Helicopter Textron.
IOC: 2009.
Production: 51 planned (CV-22; incl three replacements).
Inventory: 50.
Operator: AETC, AFSOC, ANG (associate).
Active Variant:
- CV-22B. Air Force special operations variant of the V-22 Osprey.
Dimensions: Span 84.6 ft, length 57.3 ft, height 22.1 ft, rotor diameter 38 ft.
Weight: Max vertical T-O 52,870 lb; max rolling T-O 60,500 lb.
Power Plant: Two Rolls-Royce-Allison AE1107C turboshfts, each 1,050 shp.
Performance: Cruise speed 277 mph, combat radius 575 miles.
Ceiling: 25,000 ft.
Armament: One ramp-mounted 50-caliber machine gun; Planned: One belly-mounted forward firing 7.62 mm minigun.
Accommodation: Two pilots, two flight engineers. Load: 24 troops seated, 32 troops on floor, or 10,000 lb cargo.

MC-12W LIBERTY
Tactical ISR

Brief: The MC-12W is a manned, medium/low-altitude tactical ISR, SIGINT, and targeting platform based on the Beechcraft King Air 350. It was hastily developed under Project Liberty to meet an urgent operational need for manned battlefield ISR and deployed to Iraq and Afghanistan in less than a year in 2009. MC-12W is capable of complete ISR collection, processing, analysis, and dissemination. The aircraft provides targeting data and tactical ISR direct to special operations ground forces. Specialized equipment includes FMV, laser designation, various sensors, BLOS connectivity, and SATCOM. An initial seven King Air 350s were modified with basic sensors and data links, followed by an additional 30 extended-range King Air 350s with enhanced FMV and laser designator, improved SIGINT, and increased bandwidth BLOS. ACC divested its 33-strong fleet in 2015, passing its aircraft to USSOCOM (designated MC-12W/Javanmard III) and the Oklahoma ANG. These aircraft formed as a dedicated SOF support mission deploying for the first time to Afghanistan in 2016. Ongoing upgrades include navigation enhancements for GPS-degraded operations, IR suppression to improve survivability, and an improved high-definition EO/IR sensor. The aircraft still require Link 16, operator display upgrades, and a high-fidelity roll-on/roll-off EO/IR sensor to meet COCOM requirements. Upgraded engines and five-bladed propellers are also needed to boost performance, cut noise signature, and improve safety during short/austere airfield operations.

Contractors: Beechcraft; L3Harris.
First Flight: April 28, 2009.
Delivered: April 2009-2012.
IOC: June 2009.
Production: 42.
Inventory: 13.
Operator: ANG.
Aircraft Location: Will Rogers ANGB, Okla.
Active Variant:
- MC-12W. Modified Beechcraft King Air equipped for battlefield ISR and targeting.
Dimensions: Span 57.9 ft, length 46.7 ft, height 14.3 ft.
Weight: Max T-O 15,000 lb (350) and 16,500 lb (350ER).
Power Plant: Two Pratt & Whitney Canada PT6A-60A turboprops, each 1,050 shp.
Performance: Speed 359 mph, range 1,725 miles (350) and 2,760 miles (350ER).
Ceiling: 35,000 ft.
Accommodation: Two pilots, two sensor operators.
MC-130H COMBAT TALON II
Special operations airlift/aerial refueling

Brief: The MC-130H is a special operations tanker/mobility aircraft based on the C-130H. Its primary missions are covert day, night, and adverse weather infiltration, exfiltration, and resupply of special operations forces in hostile or denied territory. They also provide air-drop resupply, rotary wing aerial refueling, and psyops. Mc-130J are fitted with wing-mounted external fuel tanks and drogue refueling pods to refuel HH-60 and CV-22, and can also receive fuel inflight. Specialized systems include fully integrated INS/GPS, color cockpit LCDs, NVG lighting, HUDs, integrated defensive systems, digital moving map display, EO/IR system, dual secure voice/data satcom, enhanced cargo handling, and extended-life wings. MC-130Js have secondary leaflet and rubber raiding craft aerial delivery roles for psyops and littoral ingress/egress. Crew is smaller than legacy models, but includes CSO/auxiliary flight deck stations to handle aerial refueling (otherwise performed by the flight engineer). Loadmasters handle remaining flight engineer/comms functions. Combat Shadow II was redesignated Commando II in reference to the WWII C-47 in 2012 and replaced the legacy MC-130P in 2017. FY20 funds procure eight airframes under a follow-on multiyear contract through FY24. Funds continue Radio Frequency Countermeasure (RFCM) installation to detect, locate, and respond to emerging threats, and adds Airborne Mission Networking (AbMN), which gives aircrew a common air/ground picture to better manage complex workloads. MC/AC-130J lag the baseline C-130J fleet on Block 7/8.1 upgrades and airspace compliance mods will be fielded separately to meet FAA’s 2020 mandate. AFSOC began flight testing the developmental Silent Knight TF/TA radar in 2019. The system, housed in a second, small radome between the nose and cockpit gives MC-130J low-level nighttime/adverse weather penetrating capability. TF/TA will allow the type to fully replace the legacy MC-130H by 2021. Other mods include defensive systems upgrade and variable-speed drogue to refuel diverse aircraft types during a single sortie. An MC-130J delivered to Cannon on Oct. 21, 2019, marked the 2,600th C-130J-model variant delivered worldwide.

Contractors: Lockheed Martin (airframe); Boeing.
IOC: June 30, 1993.
Production: 24.
Inventory: 16.
Operator: AFSOC.
Aircraft Location: Hurlburt Field, Fla.; Kadena AB, Japan.
Active Variant: -MC-130H Combat Talon II. SOF support and aerial refueling tanker fielded in 1991.
Dimensions: Span 132.6 ft, height 38.5 ft, length 99.8 ft.
Weight: Max T-O 155,000 lb.
Performance: Speed 300 mph, range 3,105 miles.
Fuel Capacity: Approx. 63,000 lb (81,120 lb with additional internal tanks) at up to 450 gpm.
Ceiling: 33,000 ft.
Accommodation: Two pilots, navigator, EWO, flight engineer, two loadmasters.
Load: 77 troops, 52 paratroops, or 57 litters.
U-28A DRACO

Tactical ISR

Brief: The U-28A is a manned, tactical ISR and targeting platform based on the Pilatus PC-12. It is employed worldwide in support of special operations ground forces, humanitarian efforts, and search and rescue. Mods include advanced radio-comms suite, survivability equipment, EO sensors, and advanced navigation systems. The USSOCOM-owned aircraft are operated by AFSOC as a nonstandard fleet. AFSOC first employed the aircraft during Enduring Freedom in Afghanistan and Iraqi Freedom. The fleet includes 28 operational and eight training aircraft. Two aircraft were lost to fatal mishaps in Djibouti in 2012 and at Cannon in 2017. Ongoing upgrades include sensor, self-defense, remote SIGINT, and navigation mods to enable ops in GPS-degraded environments and comply with Federal Aviation Administration airspace mandates. Multispectral Targeting System installation includes FMV, EO-IR, IR real-time video, and co-aligned laser designator. New Advanced Threat Warning (ATW) includes missile, hostile installation includes FMV, EO-IR, IR real-time video, and co-aligned laser designator. New Advanced Threat Warning (ATW) includes missile, hostile.

Contractor: Pilatus Aircraft Ltd.
Delivered: 2006-N/A.
Production: 36.
Inventory: 28 (USSOCOM-owned).
Aircraft Location: Cannon AFB, N.M.; Hurlburt Field, Fla.
Active Variant:
•U-28A. Special operations variant of the civilian Pilatus PC-12.
Dimensions: Span 53.3 ft, length 47.3 ft, height 14 ft.
Weight: Max T-O 10,935 lb.
Performance: Speed 253 mph, range 1,725 miles.
Ceiling: 30,000 ft.
Accommodation: Two pilots, crew.

ISR/BM/C3 AIRCRAFT

CHALLENGER CL-600 COMBAT FLIGHT INSPECTION

Combat Flight Inspection

Brief: Challenger is a modified, long-range executive-class jet equipped with specialized instrumentation for Combat Flight Inspection (CFIN). The three-aircraft fleet is owned by the Federal Aviation Administration and operated by USAF to certify that airbase NAVAIDs (Navigational Aids) such as TACAN, VOR, and ILS, as well as approach/departure procedures are safe and meet applicable standards before all-weather flight operations can begin. USAF has lacked a fully organic CFIN capability since retiring the C-29A and handing flight inspection over to the FAA in 1991. The FAA and USAF jointly replaced the aging and range-limited C-29A, and USAF procured a single airplane in FY09. Due to the high-risk environment, Air Force Flight Standards Agency Det. 1 crews from

Will Rogers ANGB conduct flight checks in combat theaters, as well as forward locations including Antarctica. In addition to combat ops, the fleet is tasked with inspecting US, allied, and partner-nation facilities overseas. USAF supports procurement and maintenance of military-specific equipment required for CFIN, including secure anti-jam radios, IFF, Mode 4/5 transponders, and self-defense suites for protection during forward-deployed operations.

Contractor: Canadair (Bombardier).
Delivered: 2006.
Production: N/A.
Inventory: Three (FAA-owned).
Operator: AMC, AFRC (associate).
Aircraft Location: Will Rogers ANGB, Okla.
Active Variant:
•CL-600-2B16. CL-600 with uprated turbofans and winglets, equipped for the CFIN role.
Dimensions: Span 61.8 ft, length 68.4 ft, height 20.6 ft.
Weight: Max T-O 40,125 lb.
Power Plant: Two GE Aviation CF34 turbofans, each 9,140 lb thrust.
Performance: speed Mach 0.83, range 3,915 miles.
Ceiling: 45,000 ft.
Accommodation: Two pilots, flight inspection technician.

E-3 SENTRY

Battle management/early warning/C2

Brief: The E-3 airborne warning and control system (AWACS) is a heavily modified Boeing 707-320B tasked with all-weather, air and maritime surveillance, command and control, battle management, target, threat, and emitter detection, classification, and tracking. The aircraft is capable of surveilling airspace in excess of 200 miles from surface to stratosphere. AWACS coordinates theater air operations in direct subordination to joint/combined air and space operations centers. It can simultaneously conduct C2, BM, and target detection/tracking. E-3Bs were upgraded to Block 30/35 standards in 2001. USAF is equipping the aircraft with interim IFF to keep it airspace-compliant until Block 40/45 upgrade or divestiture. Block 40/45 aircraft are redesignated E-3G. The upgrade is the most comprehensive enhancement to date and improves tracking/identification, system reliability, and life-cycle cost. Mods include open-architecture computing, operator workload reduction, new consoles, improved electronic support measures (ESM), and passive surveillance capability. DRAGON (Diminishing manufacturing sources Replacement of Avionics for Global Operations and Navigation) upgrades add a digital cockpit and next-generation CNS/GATM and are being jointly developed with NATO to maintain interoperability. Ongoing efforts include shortening the kill chains for time-sensitive targets, modernizing airborne moving target indication, and FY20 adds high-speed jam-resistant Link 16 and accelerates Mode 5 IFF. Electronic Protection (EP) will improve radar processing for a classified requirement. FY20 starts advanced BLOS satcom/second-generation NATO UHF, as well as anti-jam GPS. Three airframes completed Block 40/45 upgrades last year bringing the upgraded fleet to 24 and funds supported retaining a squadron of seven AWACS previously slated for divestiture in FY19. NATO recently elected to modernize its 14 E-3As similarly to USAF’s Block 40/45 standard, extending its fleet through 2035.

Contractors: Boeing, Northrop Grumman (radar); Lockheed Martin (computer); Rockwell Collins (DRAGON cockpit upgrade).
E-4 NATIONAL AIRBORNE OPERATIONS CENTER

Nuclear command and control

Brief: The E-4B is a highly survivable flying C3 center enabling national leaders to direct nuclear and conventional forces, execute emergency war orders, and coordinate civil response actions in support of the National Military Command System (NMCS). It is hardened against the effects of nuclear explosions, including electromagnetic pulse (EMP). Comms and data processing capabilities include EHF Milstar satcom, six-channel International Maritime Satellite, and a triband radome houses the SHF communications antenna. All aircraft underwent Block 1 upgrades, enhancing electronic and communications infrastructure with commercial off-the-shelf (COTS) systems. Ongoing upgrades include replacing Milstar data links with AEHF-compatible FAB-T, replacing the VLF/LF transmitter, and upgrading CNS/ATM with civil compliant systems. Development includes SHF satcom modernization and FY20 begins UHF satcom modernization. USAF is also drafting requirements to replace E-4B with a more modern platform, while DOD is looking to combine both the Navy’s E-6B Mercury and USAF E-4B into a single commonly configured “Survivable Airborne Operations Center” (SAOC) fleet. Airframes are viable to 2039, but phaseout of commercial 747-200s hampers sustainability beyond 2020.

Contractors: Boeing; Raytheon (FAB-T).

First Flight: June 13, 1973 (E-4A); June 10, 1978 (E-4B).

Delivered: March 1977-84.

IOC: December 1974.

Production: 31.

Inventory: 10 (E-3B); one (E-3C); 20 (E-3G).

Operator: ACC, PACAF, AFRC (associate).

Aircraft Location: JB Elmendorf-Richardson, Alaska; Kadena AB, Japan; Tinker AFB, Okla.

Active Variants:
- E-3B. Block 30/35 upgraded aircraft.
- E-3C. Block 30/35 upgraded aircraft with additional advanced capabilities.
- E-3G. Block 40/45 upgraded aircraft.

Dimensions: Span 145.8 ft, length 152.9 ft, height 41.8 ft.

Weight: Max T-O 335,000 lb.

Power Plant: Four Pratt & Whitney TF33-PW-100A turbofans, each 21,000 lb thrust.

Performance: Speed 360 mph, range 5,000+ miles (air refuelable).

Ceiling: Above 35,000 ft.

Accommodation: Two pilots, navigator, flight engineer, 13-19 mission specialists.

E-8 JSTARS

Command and control/ISR

Brief: E-8C is a ground moving target indication (GMTI), airborne battlefield management/command and control platform. Its primary mission is providing theater commanders with ground surveillance data to support tactical operations. E-8 evolved from the Army/Air Force Joint Surveillance Target Attack Radar System (JSTARS) program. The aircraft made its first radar-equipped test flight in December 1988, and the first two aircraft deployed for Desert Storm while the system was still under development. Early airframes were eventually retrofitted to Block 20 production standards featuring more powerful computers, an internet protocol local area network, and BLOS connectivity. JSTARS is equipped with a canoe-shaped radome under the forward fuselage housing a 24-ft-long, side-looking phased array radar antenna. It can locate, classify, and track vehicles at distances exceeding 124 miles, and more recent refinements have enabled human-target tracking. Target data is transmitted via data link to ground stations or other aircraft. USAF halted modernization funds and retired the program’s tested aircraft in 2015 but then canceled plans to replace the E-8 with a more affordable, business-class airframe. The service now plans to retain JSTARS through the mid-2020s, upgrading the aircraft with Mode SIFF, digital UHF/VHF comms and other needs to maintain its viability. Officials are considering disaggregating JSTARS functions among several platforms rather than fielding a direct replacement, now known as the Advanced Battle Management System (ABMS). Ongoing modification consists of Secure Common Data Link (SDL) to enable LOS networking with Common Ground Stations. USAF began efforts to improve fleetwide availability starting in FY18 via system upgrades and optimized maintenance flow. The service aims to be capable of simultaneously deploying six aircraft to meet combatant command requirements by 2022.

Contractors: Northrop Grumman; Raytheon.

First Flight: April 1, 1988.

IOC: Dec. 18, 1997.

Production: 18.

Inventory: 16 (E-8C); one (TE-8).

Operator: ANG.

Aircraft Location: Robins AFB, Ga.

Active Variants:
- E-8C. Block 20 upgraded JSTARS platform based on the Boeing 707-300.
- TE-8A. Crew training aircraft based on the E-8.

Dimensions: Span 145.8 ft, length 152.9 ft, height 42.5 ft. Weight: Max T-O 336,000 lb.

Power Plant: Four Pratt & Whitney TF33-102C turbojets, each 19,200 lb thrust.

Performance: Speed 584 mph (optimal orbit), range 11 hr normal endurance (longer with air refueling).

Ceiling: 42,000 ft.

Accommodation: Two pilots, navigator, flight engineer, 15 Air Force/three Army mission crew (mission dependent).
E-9A WIDGET

Range control

Brief: The E-9A is a modified DHC-8 commuter aircraft that provides air-to-air telemetry support for weapons testing, target drone operations, and range clearance. The aircraft supports operations at the Eglin Test and Training Range over the Gulf of Mexico and provides telemetry for weapons system evaluation at Holloman and the Utah Test and Training Range. Mission modifications include AN/APS-143(V-1) airborne sea surveillance radar, UHF telemetry, and signal relay systems. The E-9 is able to track flying and surface targets. It can detect small watercraft at ranges up to 25 miles. The fleet operates in concert with three drone recovery vessels and two patrol boats to clear waterways and airspace of civil traffic before live-fire testing or hazardous military activities commence. It also provides tracking and assistance with recovering targets. The aircraft can remotely initiate destruction of damaged or malfunctioning aerial target drones.

Contractors: Bombardier (formerly De Havilland Canada); Sierra Nevada Corp. (conversion).

First Flight: June 1983 (DHC-8).

Delivered: 1988.

IOC: June 1988.

Production: Two.

Inventory: Four (two currently in modification).

Production: 2023 (planned).

Contractors: Northrop Grumman; Bombardier.

First Flight: August 2007.

IOC: Circa 2011.

Production: Four.

Inventory: Four.

Operator: ACC.

Aircraft Location: Kandahar Airfield, Afghanistan.

Active Variant:

- E-11A. Modified Bombardier BD-700 equipped with the BACN payload.

Dimensions: Span 94 ft, length 99 ft 5 in, height 25 ft 6 in.

Weight: Max T-O 99,500 lb.

Power Plant: Two Rolls-Royce BR710A2-20 turbofans, each 14,750 lb thrust.

Performance: Speed Mach 0.88, range 6,900 miles.

Ceiling: 51,000 ft.

Accommodation: Two pilots, two mission operators.

EC-37B COMPASS CALL

EW/EA

Brief: The EC-37B is a next-generation, tactical jamming platform tasked with disruption of enemy C3, radar, and navigation. It will also offer offensive counterinformation, EA, and SEAD support. The aircraft is based on the ultra-long-range Gulfstream G550 business aircraft and adapted from the Navy’s special mission configuration. USAF awarded L3 Technologies a contract on Sept 7, 2017, to replace the EC-130H in the tactical EA role and transplant its “Compass Call” systems to a more modern and survivable aircraft. USAF added procurement of two EC-37B airframes to the existing Compass Call program in FY17. The program, originally dubbed “EC-X” will “re-host” upgraded EC-130H mission equipment directly to the EC-37 with nearly 70 percent remaining unchanged. The first aircraft was purchased in FY17, followed by a second in FY18. Congress accelerated the program by funding two airframes in FY19. FY20 funds a fifth airframe and USAF plans to procure and modify one aircraft a year until reaching a 10 aircraft fleet. The upgraded Baseline 3 Compass Call package will include the Advanced Radar Countermeasure System (ARCS) and other significant capability enhancements. The new platform will be faster, more economical, capable of higher altitude operations, and more survivable than the current EC-130H. These capabilities will allow the EC-37B to conduct stand-off jamming/EA from greater distance, enabling attack on A2/AD targets. Modification of the first and second aircraft is ongoing with a third airframe beginning retrofit in FY20. Air Combat Command plans to field the first two EC-37Bs in 2023.

Contractors: Gulfstream Aerospace (airframe); BAE Systems; L3 Harris (mission equipment).

First Flight: N/A.

Delivered: 2023 (planned).

IOC: 2023 (planned).

Production: Four (two currently in modification).

Inventory: 10 (planned).
EC-130H COMPASS CALL

Electronic warfare

Brief: The EC-130H is a modified C-130H designed to disrupt enemy C3 and limit adversary coordination and force management. Tasks include tactical jamming/disruption of communications, radar, and navigation, offensive counterinformation, EA, and SEAD support. The fleet has been deployed near-constantly since the beginning of combat operations in Afghanistan in 2001. The aircraft was designed to be easily updated and modified. All aircraft have been retrofitted to Block 35 standards and are aerial refuelable. Mission equipment upgrades occur approximately every three years to ensure continued protection and effectiveness against evolving threats. Baseline 2 mods are ongoing, and the Baseline 3 configuration, including the Advanced Radar Countermeasure System (ARCS) and other significant capability enhancements, is slated for fielding in 2020. USAF is procuring the EC-37B to replace the EC-130H, but funding delays required extending the current fleet. EC-130H recently underwent center wing box replacement/structural mods (in common with the C-130H fleet). Some 70 percent of the EC-130H’s mission equipment will be directly cross-decked to the EC-37B, and ongoing system upgrades include counter-radar/counter satellite navigation, third-generation Special Purpose Emitter Array (SPEAR), and adaptive EA to quickly react to emerging threats. Airframe improvements include digital glass cockpits, Mode 5IFF, and airspace compliant CNS/ATM. Ten primary mission aircraft are supplemented by two backups, two attrition reserves, and one system integration testbed.

Contractors: Lockheed Martin; BAE Systems; L3Harris.

First Flight: 1981.
Delivered: March 19, 1982-unink.
IOC: 1983; Block 35 from 2011.
Production: (Converted).
Inventory: 11 (EC-130H).
Operator: ACC.
Aircraft Location: Davis-Monthan AFB, Ariz.
Active Variants:
•EC-130H. Electronic attack variant of the C-130H.
 Dimensions: Span 132.6 ft, length 99 ft, height 38 ft.
 Weight: Max T-O 155,000 lb.
 Performance: Speed 300 mph at 20,000 ft; unrefueled range 2,295 miles, seven hr normal endurance (air refuelable).
 Ceiling: 25,000 ft.
 Accommodation: Two pilots, navigator, flight engineer; mission crew: two EWOs; mission crew supervisor (cryptologic), four cryptologic linguists, acquisition operator, and airborne maintenance technician.

EC-130J COMMANDO SOLO/SUPER J

Psychological warfare/special operations airlift

Brief: The EC-130J is the Air Force’s primary psychological warfare platform, providing military information support operations (MISO) and civil affairs broadcast. Roles include offensive counterinformation radio, television, and military communications broadcast, EA (or SOF mobility), depending on variant. EC-130J and legacy Commando Solo variants have conducted psychological operations in almost every US contingency since 1980. The EC-130J Commando Solo is equipped with radio and color television broadcast equipment for psychological warfare, enhanced navigation, and self-protection. With transition to the EC-130J, USAF added a new, secondary mission resulting in a second variant. Three heavily modified EC-130J Commando Solo aircraft serve as a standard broadcasting station for psychological warfare operations. Four EC-130Js, dubbed Super J, perform secondary, low-cost EA on top of their special operations mobility SOF-FLEX (Special Operations Flexible) mission. SOF-FLEX includes personnel and cargo airdrop, combat offload, and infiltration/exitation. USAF is working to develop an Operational Flight Program Block upgrade cycle for the EC-130J’s mission specific equipment, and the airframe is undergoing Block 8.1 upgrades in tandem with the baseline C-130J. Ongoing mods include Large Aircraft IR Countermeasures (LAIRCM) to counter MANPAD threats and Multi-Mission Platform-Heavy (MMP-H) digital broadcast system. MMP-H, previously the Removable Airborne MISO Systems (RAMS), was developed from the Army’s Fly Away Broadcast System and will allow all aircraft to be de-modified to a SOF multimission configuration. After accelerated development, testing, and combat evaluation MMP-H will enable stand-off radio, television, UHF/ VHF, and cellular broadcast against denied threats from up to 175 miles away. All variants are operated by the ANG’s 193rd Special Operations Wing. Low-cost mods include safety, reliability, parts obsolescence, and smaller capability improvements.

Contractors: Lockheed Martin; Raytheon.

First Flight: April 5, 1996 (C-130J).
Production: Seven.
Inventory: Three (Commando Solo); four (Super J).
Operator: ANG.
Aircraft Location: Harrisburg Arpt., Pa.
Active Variants:
•EC-130J Commando Solo. Modified C-130J used for broadcast and psyops.
•EC-130J Super J. Modified C-130J used for SOF mobility and psyops.
Dimensions: Span 132.6 ft, length 978 ft, height 38.8 ft.
Weight: Max T-O 164,000 lb.
Power Plant: Four Rolls-Royce-Allison AE2100D3 turboprops, each 4,637 shp.
Performance: Speed 335 mph cruise, range 2,645 miles (air refuelable).
Ceiling: 28,000 ft.
Accommodation: Two pilots, flight systems officer, mission systems officer; two loadmasters, five electronic communications systems (CS) operators.
OC-135 OPEN SKIES
Observation/treaty verification

Brief: The OC-135 is a modified WC-135B used for arms control treaty observation and imagery collection over nations party to the 1992 Open Skies Treaty. Specialized mission equipment includes side-looking synthetic aperture radar, infrared line scanning devices, video camera, and framing and panoramic optical cameras installed in the rear of the aircraft. The two oblique KS-87E framing cameras permit photography from approximately 3,000-ft altitude, and one KA-91C panoramic allows for wide sweep photography from approximately 35,000 ft. Recent efforts include acquiring and certifying a digital camera suite to replace obsolete and difficult to maintain wet-film cameras in compliance with presidential directive, and adding FAA-compliant CNS/ATM. The U.S. State Department declared Russia in violation of the Open Skies Treaty for preventing access to Kaliningrad and the border with Georgia, and USAF flew no sorties in 2018. The U.S. only resumed overflights of Russia in 2019. USAF is seeking to replace the unreliable, performance-limited fleet with two “small airliner class” aircraft to permit full access across the Russian Federation. The service expects to award a replacement contract and procure both airframes by mid-2020 to enable IOC in late 2022.

Contractor: Boeing.
First Flight: 1993.
Delivered: 1993-96.
IOC: October 1993.
Production: Three.
Inventory: Two.
Operator: ACC.
Aircraft Location: Offutt AFB, Neb.

Active Variant:
-OC-135B. Modified C-135 equipped for photo reconnaissance/treaty verification.
Dimensions: Span 131 ft, length 135 ft, height 42 ft.
Weight: Max T-O 297,000 lb.
Power Plant: Two Garrett TPE331-12UAR-701 turboprops, each 1,100 shp.
Performance: Speed 334 mph, range 2,070 miles.
Ceiling: 25,000 ft.
Accommodation: Two pilots, navigator/mission systems operator.

RC-135S COBRA BALL
Electronic reconnaissance

Brief: The RC-135S gathers measurement and signature intelligence (MA-SINT) on missile-associated signatures and tracks during boost and reentry. Cobra Ball superseded Rivet Ball and Rivet Amber in 1969 and collects both optical and electronic data on ballistic missile activity. Its specialized equipment includes the long-range Medium Wave Infrared Array (MIRA) EO/IR sensor suite, all-weather tracking radar, and an advanced communications suite. Reconnaissance data is used to assess missile threats, evaluate missile performance, characterize adversary missiles, and analyze weapons testing and technology. Data also supports treaty verification and theater ballistic missile nonproliferation. It can deploy anywhere in the world in 24 hours and provide on-scene EO reconnaissance. Continuous baseline upgrades keep the fleet viable through 2040, and aircraft are currently undergoing Baseline 5 mods (similar to Rivet Joint Baseline 11/12). FY20 launches Baseline 7, and flexible funding permits rapid, variant-specific mods in response to emerging/evolving threats. Baseline 7 upgrades will include Rivet Joint COMINT suite integration, digital electromagnetic signature direction finding, digital search, and SATCOM-aided target discrimination.

Contractors: Boeing (airframe); L3Harris; Textron Systems.
First Flight: N/A.
Delivered: October 1969-November 2000 (redelivery as RC-135S).
IOC: March 1972 (Cobra Ball II).
Production: Four converted.
Inventory: Three.
Operator: ACC.
Aircraft Location: Offutt AFB, Neb.

Active Variant:
-RC-135S. Modified C-135 equipped for MA-SINT.
Dimensions: Span 131 ft, length 135 ft, height 42 ft.
Weight: Max T-O 297,000 lb.
Power Plant: Four CFM International F108-CF-201 turbofans, each 21,600 lb thrust.
Performance: Speed 517+ mph, range 3,900 miles (farther with air refueling).
Ceiling: 45,000 ft.
Accommodation: Two pilots, navigator, three EWOs, two airborne systems engineers, two airborne mission specialists.

RC-26 CONDOR
Tactical ISR

Brief: The RC-26 is a modified Fairchild Metro 23 tasked with counter-narcotics, manned tactical ISR, disaster response, and civil support missions. USAF selected the C-26 to fulfill a joint ANG and Army National Guard airlift requirement in 1988, subsequently modifying the airframes to the RC-26 configuration. The aircraft is equipped with specialized digital cameras, IR video and communications equipment to enable domestic and international anti-trafficking. The aircraft has a secondary role providing real-time video streaming to responders following hurricanes, wildfires, and other disasters. In the fire-support role, aircraft sensors can detect fires at up to 80 miles and accurately map them from up to three miles away. An extensive communications suite allows communications from 29 to 960 MHz including provisions for plugged-in 800 MHz handheld radio and airphones. The fleet is currently split between three configurations, including six Block 25R, five Block 20, and two non-mission equipped C-26As. Ongoing upgrades include airspace compliance mods to meet FAA mandates. The ANG was barred from divesting the platform in FY20 unless it demonstrates to Congress that the fleet’s missions can be performed by other assets. If retained, priority upgrades include SAR to enable all-weather ground moving target tracking and replacing the existing propellers with five-bladed units to increase range and short-field performance.

Contractors: Fairchild (airframe); Elbit Systems (avionics upgrade).
First Flight: 1990.
Delivered: March 1989-1996 (delivered as C-26A/B).
IOC: N/A.
Production: 10 (C-26A); 33 (C-26B); 11 (RC-26).
Inventory: 11 (plus two non-mission essential C-26As).
Operator: ANG.
Aircraft Location: Des Moines Aptr., Iowa; Ellington Field, Texas; Fairchild AFB, Wash.; Fresno Yosemite Arpt., Calif.; Key Field, Miss.; Kirtland AFB, N.M.; Montgomery Regional Arpt., Ala.; Truax Field, Wis.; Tucson Arpt., Ariz.; Yeager Arpt., W.Va.

Active Variants:
Dimensions: Span 57 ft, length 59.5 ft, height 16.6 ft.
Weight: Max T-O 16,500 lb.
Power Plant: Two Garrett TPE331-12UAR-701 turboprops, each 1,100 shp.
Performance: Speed 334 mph, range 2,070 miles.
Ceiling: 25,000 ft.
Accommodation: Two pilots, navigator/mission systems operator.

JUNE 2020
AIRFORCEMAG.COM 125
RC-135U COMBAT SENT

Electronic reconnaissance

Brief: The RC-135U is tasked with strategic reconnaissance and technical intelligence (TECHINT) gathering on radar/emitter systems. Three Combat Sent aircraft were converted from RC-135Cs in 1970-71 to fill a critical need for data collection on adversary radar threats and defenses. Combat Sent’s distinctive chin and wingtip antenna arrays, large cheek fairings, and extended tail contain specialized sensor suites to collect data and analyze airborne, land, and naval radar/emitter systems. Each airframe incorporates a different, tailored sensor suite, and the data gathered is critical to the effective design and programming of RWR (radar warning receivers), jammers, decoys, anti-radiation missiles, and threat simulators. Combat Sent additionally enables strategic analysis for National Command Authorities and combatant forces. The aircraft utilizes radar/solid-state doppler, INS, celestial, and GPS for navigation, and is capable of both operator, automated, and blended signal gathering and analysis. Continuous baseline upgrades keep the fleet viable through 2040, and aircraft are currently undergoing Baseline 5 mods (similar to Rivet Joint Baseline 12). Flexible funding permits rapid variant-specific mods in response to emerging/evolving threats. FY20 focus on completing Baseline 5/6 upgrades including wideband SATCOM reachback, integrating Rivet Joint’s COMINT suite, improving operator interface, enhancing antennas and processors, and capability upgrades for dense signal environments.

Contractors: Boeing (airframe); L3Harris; Textron.

First Flight: N/A.

Delivered: Circa 1973-99 (continuous equipment updates).

IOC: Circa 1973.

Production: Converted.

Inventory:
- Eight (RC-135V); nine (RC-135W); three (TC-135W); one (NC-135W).
- Converted.
- Production: Circa 1973-99 (continuous equipment updates).
- Production: Three converted.
- Inventory: Two.

Operator: ACC.

Aircraft Location: Offutt AFB, Neb.; forward operating locations: Al Udeid AB, Qatar; NSF Diego Garcia, U.K.; Eielson AFB, Alaska; Kadena AB, Japan; RAF Mildenhall, U.K.; NSA Souda Bay, Greece.

Active Variant:
- TC-135W: Training version of the operational aircraft.
- NC-135W: Rivet Joint systems integration testbed operated by AFMC.

Dimensions:
- Span 131 ft, length 135 ft, height 42 ft.
- Weight: Max T-O 322,500 lb.

Power Plant: Four CFM International F108-CF-201 turbofans, each 21,600 lb thrust.

Performance:
- Speed 500+ mph, range 3,900 miles (farther with air refueling).
- Ceiling: 42,000 ft.

Accommodation:
- Two pilots, two navigators, three airborne systems engineers; Mission crew: 10 EW officers, six or more electronic, technical, mission-area specialists.

U-2S DRAGON LADY

High-altitude reconnaissance

Brief: U-2S is the Air Force’s only manned, strategic, high-altitude, long-endurance ISR platform and is capable of SIGINT, IMINT, and MASINT collection. The aircraft’s modular payload systems allow it to carry a wide variety of advanced optical, multispectral, EO/IR, SAR, SIGINT, and other payloads simultaneously. Its open system architecture also permits rapid fielding of new sensors to counter emerging threats and requirements. U-2s comprise 50 percent of the high-altitude ISR fleet, and they are heavily tasked—pushing retirement to 2022 or beyond. The original U-2A first flew on Aug. 4, 1955. The type was further developed into the larger, more capable U-2R which first took flight on Aug. 28, 1967, and was delivered between 1967 and 1968. Current U-2s date to the 1980s when U-2R production was reopened under the designation TR-1 (later returned to U-2R designation in 1992). The TR-1A first flew on Aug. 1, 1981, and was reengined and modernized starting in 1994, emerging as the U-2S. Current Block 20 U-2S features glass cockpits, digital autopilot, modernized EW system, and updated data links. Its major sensors are the ASARS-2A SAR, SYERS-2A multispectral EO/IR imagery system, and enhanced Airborne Signals Intelligence Payload (ASIP). The legacy optical bar camera is still used to provide broad-area synoptic imagery. The fleet is currently undergoing Block 20.1 upgrades, adding ASARS-2B,
next-generation SIGINT, avionics and navigation refresh, and data link (Link-16) modernization. ASARS-2B significantly improves the U-2’s high-altitude, deep-look radar ground mapping, moving target, and maritime capabilities. Two ASARS-2B equipped aircraft will begin flight testing in FY22, and IOC is expected in FY23. U-2s are also receiving stellar and GPS-denied navigation, quick-change modular mission systems, multispectral sensor, and EW system upgrades. Airframe mods, helmet and pressure suit refresh, and egress improvement are also ongoing. A U-2 successfully received missile launch data detected by an F-35 to a ground station during a USAF/Missile Defense Agency demo in 2019.

Contractors: Lockheed Martin, Northrop Grumman (ASIP); Raytheon (ASARS); UTC Aerospace (SYERS/Optical Bar Camera).

IOC: Circa 1981 (U-2R).
Production: 35 (T/U-2S).
Inventory: 27 (U-2); four (TU-2).
Operator: ACC.
Aircraft Location: Beale AFB, Calif.; permanent forward operating locations worldwide.

Active Variants:
•U-2S. Current variant of the U-2/TR-1.
•TU-2S. A two-seat trainer aircraft originally designated U-2ST.

Performance:
Speed 410 mph, range 7,000+ miles.

Power Plant:
Four Pratt & Whitney TF33-P-5 turbofans, each 16,050 lb thrust. (WC-135C/W); Four CFM International CFM56-2 turbofans, each 21,634 lb thrust (WC-135R).

Weight:
Max T-O 40,000 lb. (WC-135C/W); 322,500 lb. (WC-135R).

Dimensions:
•WC-135W. Modified C-135B equipped for radiological monitoring and air sampling.
•WC-135R. Modified KC-135R tankers, planned to replace the aging WC-135R.
•WC-135C. Modified EC-135C equipped for radiological monitoring and air sampling.

Active Variant:
•WC-135C. Modified EC-135C equipped for radiological monitoring and air sampling.
•WC-135R. Modified KC-135R tankers, planned to replace the aging WC-135R/W fleet.
•WC-135W. Modified C-135B equipped for radiological monitoring and air sampling.

Dimensions:
Max T-O 155,000 lb; max payload 42,000 lb.

Ceiling:
Max T-O 155,000 lb; max payload 42,000 lb.

Power Plant:
Four Rolls-Royce AE2100D3 turboprops, each 4,700 shp.

Performance:
Speed 410 mph, range 7,000+ miles (farther with air refueling) (WC-135C/W); 322,500 lb. (WC-135R).

DIMENSIONS: Span 132.6 ft, length 97.8 ft, height 38.8 ft.

Accommodation: Two pilots, aerial reconnaissance weather officer, loadmaster/dropsonde operator. Load: palletized weather systems.

WC-130J Weather reconnaissance

Brief: The WC-130J "Weatherbird" is a modularly configurable C-130J equipped with specialized systems to penetrate tropical and winter storms, capture meteorological data, and aid severe weather forecasting. Early WC-130Bs entered service in 1959, followed by the WC-130E in 1962, and WC-130H in 1964. The WC-130J began replacing legacy variants in 1999, though several H models remained in service with the Puerto Rico ANG until a fatal crash resulted in the fleet’s retirement in 2019. All WC-130Js are operated by AFRC’s 53rd Weather Reconnaissance Squadron "Hurricane Hunters" at Keesler. Mission equipment includes a pod-mounted Stepped-Frequency Microwave Radiometer (SMFR) for monitoring surface winds and precipitation rates, parachute-deployed GPS dropsondes to gather vertical atmospheric profiles, and palletized operator stations/equipment. WC-130Js are optionally equipped with two external wing tanks, as well as an internal auxiliary fuel tank to increase range and endurance. Crews include an added aerial weather reconnaissance officer/flight director and weather system specialist/loadmaster. Aircraft are capable of penetrating tropical cyclones from up to 10,000 ft as low as 500 ft. The fleet primarily monitors oceanic weather over the Atlantic, Central Pacific, Caribbean, and Gulf of Mexico. Airframes are modernized in line with the baseline C-130J fleet, including Block 81 upgrades, airspace compliance mods, and enhanced service-life center wing sections. During the 2019 hurricane season, WC-130Js logged 80 missions monitoring 10 major storms including Hurricanes Dorian, which devastated the Bahamas.

Contractor: Boeing.
First Flight: 1965-96.
IOC: December 1965; 2022 (WC-135R) planned.
Production: Two (WC-135C/W); three (WC-135R) (planned).
Inventory: One (WC-135C); one (WC-135W).
Operator: ACC.
Aircraft Location: Offutt AFB, Neb.

Active Variants:
•WC-135C. Modified EC-135C equipped for radiological monitoring and air sampling.
•WC-135R. Modified KC-135R tankers, planned to replace the aging WC-135C/W/fleet.
•WC-135W. Modified C-135B equipped for radiological monitoring and air sampling.

Dimensions:
Max T-O 300,500 lb. (WC-135C/W); 322,500 lb. (WC-135R).

Power Plant:
Four Pratt & Whitney TF33-P-5 turbofans, each 16,050 lb thrust. (WC-135C/W); Four CFM International CFM56-2 turbofans, each 21,634 lb thrust (WC-135R).

Performance:
Speed 403 mph, range 4,600 miles (farther with air refueling) (WC-135C/W); speed 530 mph, range approx. 3,900 miles (farther with air refueling) (WC-135R).

Weight:
Max T-O 21,634 lb thrust (WC-135R).

Ceiling:
Max T-O 300,500 lb. (WC-135C/W); 322,500 lb. (WC-135R).

Accommodation: Two pilots, navigator, up to 31 special equipment operators/observers as required.
TANKER AIRCRAFT

HC-130N/P KING

Aerial refueling/airlift

Brief: The HC-130N/P is tasked with helicopter, in-flight refueling support for CSAR/personnel recovery, tactical C2, pararescue (PJ) deployment, and forward area refueling point missions. It conducts operations to austere airfields and denied territory for expeditionary, all-weather ops. Secondary roles include humanitarian assistance, disaster response, security cooperation/aviation advisory, emergency medical evacuation, noncombatant evacuation, and spaceflight support for NASA. Features include integrated GPS/INS navigation package, NVG lighting, FLIR, radar/missile warning receivers, chaff/flare dispensers, and data-burst communications. The HC-130P was similar to HC-130N, but was initially fit with a specialized radome to accommodate the Fulton recovery system. The HC-130J is replacing both models, and corrosion issues forced early retirement of a significant part of the fleet. Serviceable HC-130Ns were diverted from storage to replace the remaining HC-130Ps at Patrick in August 2017, and the HC-130N fleet was fully retired in December 2019. The New York ANG transitioned to the HC-130J with the arrival of its first airframe May 17, 2019, and Patrick is slated to receive its first HC-130J in early 2020.

Contractor: Lockheed Martin.
First Flight: Dec. 8, 1964 (as HC-130H).
IOC: 1966-circa 1993.
Production: 33 converted N/P models.
Inventory: Three.
Operator: AFRC, ANG.
Aircraft Location: Francis S. Gabreski Arpt., N.Y.; Patrick AFB, Fla. Planned: AFRC.
Active Variants:
- HC-130N. C-130H model modified with new center wing and aerial refueling capability.
- HC-130J. C-130J modified for CSAR and aerial refueling.

Dimensions: Span 132.6 ft, length 98.8 ft, height 38.5 ft.
Weight: Max T-O 155,000 lb.
Power Plant: Four Allison T56-A-15 turboprops, each 4,910 shp.
Fuel Capacity: 61,360 lb at 150-300 gpm (100 gpm dual, simultaneous refueling).
Performance: Speed 289 mph at S-L, range 4,000+ miles.

HC-130J COMBAT KING II

Aerial refueling/airlift

Brief: The HC-130J is tasked with helicopter in-flight refueling support for CSAR/personnel recovery, tactical C2, and pararescue (PJ) deployment. It replaces legacy HC-130N/Ps and is based on the USMC’s KC-130J tanker. It adds enhanced service-life wing, improved cargo handling system, refueling receptacle, EO/IR sensor, flight deck CSO console, and dual SATCOM. Features include integrated INS/GPS, NVG-compatible lighting, FLIR, and integrated situational awareness. Recently added Advanced Threat Warning and RF countermeasures, as well as chaff/ flares, give the HC-130 the latest self-defensive capability for recovery operations in contested environments. USAF plans to standardize HC/AC/MC-130J block upgrades, and current efforts bring all HC-130Js to a common standard. Ongoing development and upgrades include avionics Block 81 (in common with the C-130J fleet), Lightweight Airborne Radio System (LARS), and wireless intercom. LARS transitions to the new 406 MHz distress frequency and improves timely location of aircraft, vessels, and personnel. Five HC-130Js are slated for delivery in FY20, and USAF expects to complete fleet recap by 2023. New York ANG’s 106th Rescue Wing took delivery of its first HC-130J on March 21, 2019, transitioning from the HC-130H.

Contractor: Lockheed Martin.
First Flight: July 29, 2010.
Delivered: Sept. 24, 2010-present.
IOC: April 25, 2013.
Production: 37 (planned).
Inventory: 31.
Operator: ACC, AETC, ANG. Planned: AFRC.
Aircraft Location: Davis-Monthan AFB, Ariz.; JB Elmendorf-Richardson, Alaska; Kirtland AFB, N.M.; Moffett Field, Calif.; Moody AFB, Ga. Planned: Patrick AFB, Fla.
Active Variants:
- HC-130J. C-130J modified for CSAR and aerial refueling.

Dimensions: Span 132.6 ft, length 97.8 ft, height 38.8 ft.
Weight: Max T-O 164,000 lb.
Power Plant: Four Rolls-Royce AE2100D3 turboprops, each 4,591 shp.
Fuel Capacity: 73,000 lb at 160 gpm (80 gpm dual, simultaneous refueling).
Performance: Speed 363.4 mph at S-L, range 4,000+ miles (farther with air refueling).
Ceiling: 33,000 ft.

KC-10 EXTENDER

Aerial refueling/airlift

Brief: The KC-10 is a multirole tanker/transport capable of aeromedical evacuation, based on the McDonnell Douglas DC-10-30CF. The aircraft is USAF’s largest air-refueling aircraft. It is simultaneously capable of tanker and cargo roles, enabling it to support worldwide fighter deployments. The aircraft employs an advanced aerial refueling boom and hose/ drogue system allowing it to refuel a wide variety of U.S. and allied aircraft, including the CV-22 tilt-rotor, within the same mission. The aircraft has three large fuel tanks under the cargo floor and an air-refueling operator’s station recessed into the aft fuselage. It is refuelable by boom-equipped tankers. Ongoing mods include modernized navigation, surveillance, and air traffic management (CNS/ATM) in line with FAA mandates, and advanced Mode 5IFF. AMC is upgrading the entire 59-aircraft fleet and extending service life through 2045, full divestiture is planned by 2024. USAF is working to resolve widespread reliability problems with the fleet’s egress equipment after an escape slide/raft failed to deploy following an aborted takeoff in 2018.

Contractors: McDonnell Douglas (now Boeing); Collins Aerospace (CNS/ATM).
First Flight: April 1980.
Delivered: March 1981-April 1990.
IOC: August 1982.
Production: 60.
Inventory: 59.
Operator: AMC, AFRC (associate).
Aircraft Location: JB McGuire-Dix-Lakehurst, NJ; Travis AFB, Calif.
KC-46 PEGASUS

Aerial refueling/airlift

Brief: The KC-46A is a heavily modified Boeing 767-200ER multirole passenger/cargo-tanker equipped with flying boom and probe/drogue refueling capability using the Wing Air Refueling Pod (WARP) system. It is also equipped for aeromedical evacuation. KC-46 incorporates the 767’s state-of-the-art cockpit, a fly-by-wire boom, remote boom-operator’s station, advanced self-defensive suite including Large Aircraft IR Countermeasures (LAIRCM), RWR, tactical situational awareness, comms relay hosting, and nuclear/chem/bio hardening. In 2011 Boeing was awarded a contract for 179 KC-46A tankers, the first increment (KC-X), to replace about half of USAF’s KC-135R fleet. Compared to the 50-year-old KC-135, the KC-46A has more fuel capacity, improved efficiency, and enhanced cargo and AE capability. Like the KC-10, it employs an advanced refueling boom and independently operating hose/drogue system. The program’s provisioned 767-2C prototype (minus refueling boom) flew on Dec. 28, 2014, and received FAA type-certification in December 2017. The full-up KC-46A flew for the first time from Everett, Wash., on Sept. 25, 2015. USAF accepted its first production KC-46 from Boeing on Jan. 10, 2019. The service awarded LRIP contracts for 19 aircraft in 2016, a follow-on Lot 3 contract for 15 aircraft in 2017, 18 aircraft in 2018, and 15 in 2019. Japan is the launch international customer and plans to take delivery of six tankers through FY24. A total of 38 aircraft are slated for upgrade in FY20.

Key Characteristics:
- **Power Plant:** Two Pratt & Whitney PW4062, each 62,000 lb thrust.
- **Performance:** Speed 619 mph, range 7,500 miles, or 3,800 miles with air refueling.
- **Fuel Capacity:** 356,000+ lb. at 1,100 gpm (boom), 470 gpm (drogue).
- **Accommodation:** Two pilots, navigator, boom operator, AE crew: two flight nurses, three medical technicians; other crew depending on mission.
- **Load:** Up to 75 people and 17 pallets or 27 pallets up to approx. 170,000 lb.
- **Dimensions:** Span 195 ft, length 136.3 ft, height 41.7 ft.
- **Weight:** Max T-O 322,500 lb.
- **Power Plant:** Four CFM International CFM56-2 (USAF designation F108) turbofans, each 21,634 lb thrust.
- **Performance:** Speed 530 mph at 30,000 ft, range 1,200 miles with air refueling.

Contractor: Boeing; Rockwell Collins (Block 45).

First Flight: Aug. 4, 1982 (KC-135R).

Delivered: July 1984-June 9, 2005 (KC-135R).

IOC: June 1987.

Production: 732 (420 converted to KC-135R).

Inventory: 343 (KC-135R); 51 (KC-135T).

Operator: AETC, AFMC, AMC, PACAF, USAFE, ANG, AFRC.

Active Variants:
- **KC-135R.** Re-engined KC-135A fitted with CFM turbofan engines.
- **KC-135T.** Former KC-135Qs, able to carry different fuels in wing and fuselage tanks.

Key Characteristics:
- **Dimensions:** Span 165 ft, length 185.5 ft, height 52.8 ft.
- **Weight:** Max T-O 303,000 lb.
- **Power Plant:** Two Pratt & Whitney TF33-P-7, each 26,300 lb thrust.
- **Performance:** Speed 520 mph at 38,000 ft, range 5,350 miles (farther with air refueling).
- **Fuel Capacity:** 356,000+ lb. at 1,100 gpm (boom), 470 gpm (drogue).
- **Accommodation:** Two pilots, navigator, boom operator, AE crew: two flight nurses, three medical technicians; other crew depending on mission.
- **Load:** Up to 140 passengers, six cargo pallets, max 83,000 lb.
C-5 GALAXY
Strategic airlift

Brief: The C-5 is USAF’s largest airlifter and one of the world’s largest aircraft, capable of lifting unusually large/ heavy cargo over intercontinental ranges. It is also able to take off and land in relatively short distances, and taxi on substandard surfaces if required. The Galaxy’s front and rear cargo doors permit simultaneous drive-through loading/unloading. The C-5A first flew on June 30, 1968, and a total of 81 were delivered between 1969 and 1973 reaching IOC in September 1970. C-5As underwent major wing modifications to extend their service lives and all but one (converted to C-5M) are now retired. The C-5B first flew in 1985 and was delivered between 1986 and 1989. C-5Bs incorporated all C-5A improvements including strengthened wings, uprated turbofans, color weather radar, triple INS, and defensive systems (on some aircraft). Two C-5As were modified for outsize space cargo and redelivered as C-5Cs in 1989 and 1990. The combined Avionics Modernization Program (AMP)—completed in 2011—and Reliability Enhancement and Re-engining Program (RERP), resulted in the C-5M Super Galaxy. Upgraded aircraft incorporate new GE CF6-80C2 (F138-GE-100) turbofans with 20 percent increased thrust, along with avionics, structural, and reliability fixes. A total of 49 B models, two C models, and the single C-5A were converted. Ongoing mods include CNS/ATM upgrades, improved Large Aircraft IR Countermeasures (LAIRCM) to counter MANPAD threats, and a lavatory redesign to improve reliability. Current updates encompass basic safety, reliability, and maintainability mods.

Contractor: Lockheed Martin.
First Flight: June 6, 2006 (C-5M).
Delivered: Feb. 9, 2009-Aug. 2, 2018 (C-5M).
Production: Circa 1974.
IOC: Circa 1974.
Inventory: 81 (C-5M); two (C-5M-SCM).
Operator: AMC, AFRC.

Active Variants:
- C-5M. Super Galaxy incorporating AMP and RERP.
- C-5M-SCM. Super Galaxy converted from C-5C to carry large NASA cargo.

Dimensions:
- Span 222.8 ft, length 247.8 ft, height 85.1 ft.
- Weight: Max T-O 840,000 lb.

Power Plant: Four GE Aviation F138-GE-100 turbofans, each 50,580 lb thrust.

Performance:
- Speed 518 mph, range 5,524 miles with 120,000 lb of cargo.

Ceiling: 45,000 ft.
Accommodation: Two pilots, two flight engineers, three loadmasters.

Load: 81 troops and 36 standard pallets, max 285,000 lb; incl seven MRAP vehicles, six AH-64 Apache helicopters, four M2 Bradley fighting vehicles, or two M1 Abrams main battle tanks.
transport to feature full digital, fly-by-wire control. Boeing delivered the 223rd and final USAF aircraft on Sept. 12, 2013, and the final international aircraft on Nov. 29, 2015. Fleetwide Block 16 avionics and weather radar mods were completed in 2015, and all aircraft will be upgraded to Block 20 standard during depot maintenance. Block 20 retrofits include some 60 programs to bring early production aircraft to a common configuration. Ongoing mods include next-generation Large Aircraft Infrared Countermeasures (LAIRCM) to combat the proliferation of man-portable air defenses, next-generation CNS/GATM, Mode S IFF, dynamic retasking, and structural, safety, and sustainment mods. Priority upgrades include HUD replacement and airspace compliance mods to meet FAA's 2020 deadline. Development includes Fixed Installation Satellite Antenna (FISA) to enable high-bandwidth BLOS data/comms and a roll-on/roll-off C2 capsule (replacing the "Silver Bullet") for in-flight conferencing. Though production ceased in 2015, USAF ferried the final aircraft to the Indian Air Force on Aug. 22, 2019. AFRC's 911th AW at Pittsburgh Airport officially transitioned from the C-130 to the C-17 in 2019.

Contractor: McDonnell Douglas (now Boeing).
First Flight: Sept. 15, 1991.
Delivered: June 1993-September 2013.
IOC: Jan. 17, 1995.
Production: 257.
Inventory: 222.
Operator: AETC, AMC, PACAF, ANG, AFRC.

Active Variant:
- C-17A. Long-range airlifter.

Dimensions: Span 169.8 ft, length 174 ft, height 55.1 ft.
Weight: Max T-O 585,000 lb.
Power Plant: Four Pratt & Whitney F117-PW-100 turbofans, each 40,440 lb thrust.
Ceiling: 45,000 ft.
Performance: Speed 518 mph at 25,000 ft, range 2,760 miles with 169,000 lb payload (farther with air refueling).

Accommodation: Two pilots, loadmaster; AE crew: Two flight nurses, three medical technicians (altered as required). Load: 102 troops/paratroopers; 36 litter and 54 ambulatory patients; 18 pallets up to max payload 170,900 lb.

C-32

VIP transport

Brief: The C-32A provides dedicated vice presidential and DV airlift. C-32B is tasked with politically sensitive crisis-mobility. Both types were acquired as commercial Boeing 757s. Aircraft assigned to the 89th Airlift Wing at Andrews fly under the call sign "Air Force Two" during vice presidential missions, but additionally serve the First Lady, Congress, and Cabinet officials. The cabin is divided into sections, including a worldwide clear and secure voice and data communications suite, first-class cabin, two business-class cabins, center galley, lavatories, fully enclosed stateroom, and a conference and staff area. The C-32B provides DOD discreet, rapid, global airlift in support of government crisis response efforts. The C-32's modern flight deck is designed to be easily upgraded, and the fleet recently underwent a full interior cabin refurbishment to more closely match the VC-25 fleet. Ongoing mods include installation of four, fully reclining crew rest seats to enable missions longer than the current 16-hour limit without pre-positioning relief crews. DOD is considering replacing the C-32, E-4B, and Navy E-6B Mercury with a common airframe, possibly reshuffling mission sets to increase efficiency.

Contractor: Boeing.
First Flight: Feb. 11, 1998 (C-32A).
Delivered: June–December 1998.
IOC: 1998.
Production: Six.
Inventory: Four (C-32A); two (C-32B).
Operator: AMC, ANG.
Aircraft Location: JB Andrews, Md.; JB McGuire-Dix-Lakehurst, N.J.

Active Variants:
- C-32A. Presidential support-configured commercial Boeing 757-200 airliner.
- C-32B. Commercial Boeing 757-200 tasked with global crisis response airlift.

Dimensions: Span 124.6 ft, length 155.2 ft, height 44.5 ft.
Weight: Max T-O 255,000 lb.
Power Plant: Two Pratt & Whitney PW2040 turbofans, each 41,700 lb thrust.
Performance: Speed 530 mph, range 6,325 miles.
Ceiling: 42,000 ft.

Accommodation: Two pilots, up to 14 cabin and maintenance crew (varies with mission). Load: Up to 45 passengers.
C-37 GULFSTREAM
VIP transport

Brief: The C-37 family provides worldwide special air mission and DV support, consisting of military versions of the ultra-long-range Gulfstream business aircraft. The C-37A is based on the Gulfstream V and is equipped with separate VIP and passenger areas, secure global voice and data communications suites, enhanced weather radar, autopilot, and advanced HUD. The C-37B, first delivered in 2004, is based on the G550 and adds directional IR countermeasures for self-defense and the advanced Honeywell Plane-View flight deck. Ongoing mods include commercial wideband satcom, to ensure senior leaders’ access to secure data and voice networks, and FAA-required CNS/ATM updates. The fleet has an average 28,000 flying hours of remaining service life. USAF issued a request for proposal in FY18 for procurement of as many as 40 additional C-37Bs to backfill the now retired C-20 fleet and took delivery of a fourth C-37B on Dec. 20, 2019. FY20 funds procure two airframes for delivery through 2021. The service also recently selected a C-37 variant for its Compass Call replacement and is evaluating several derivatives for C2 and ISR roles.

Contractor: Gulfstream Aerospace.
First Flight: October 1998 (C-37A).
Delivered: Oct. 14, 1998-present.
IOC: Dec. 9, 1998.
Production: 13.
Inventory: Nine (C-37A); three (C-37B).
Operator: AMC, PACAF, USAFE.
Aircraft Location: Chievres, Belgium; JB Andrews, Md.; JB Pearl Harbor-Hickam, Hawaii; MacDill AFB, Fla.; Ramstein AB, Germany.
Active Variants:
- C-37A. Military version of the Gulfstream V.
Dimensions: Span 93.5 ft, length 96.4 ft, height 25.8 ft.
Weight: Max T-O 90,500 lb.
Power Plant: Two BMW/Rolls-Royce BR710A1-10 turbofans, each 14,750 lb thrust (A); two BR710C4-11 turbofans, each 15,385 lb thrust (B).
Performance: Speed 600 mph, range 6,300 miles.
Ceiling: 51,000 ft.
Accommodation: Two pilots, flight attendant, crewchief; **Load:** Up to 12 passengers (A); 14 passengers (B).

C-37 CLIPPER
VIP transport

Brief: The C-40 is a medium-range DV airlift aircraft based on the commercial Boeing 737-700. It is used to transport senior military commanders, Cabinet officials, and members of Congress, as well as performing other support missions. C-40Bs are equipped with an office-in-the-sky arrangement, including clear and secure voice/data communication and broadband data/video. C-40Cs lack the advanced communications suite, are VIP configured with sleep accommodations, and are reconfigurable to carry 42 to 111 passengers. Both versions have modern avionics, integrated GPS and flight-management system/electronic-flight instrument system, and HUD. Each aircraft has auxiliary fuel tanks and managed passenger communications. Recent mods include nitrogen fuel-tank inerting for the C-40C and commercial wideband satcom for the C-40B to ensure leader’s secure top-secret voice, data, and video links, and navigation/air traffic management compliance. Ongoing work is limited to low-cost sustainment. The fleet is designed for a 30-year service life, with an average of 22 years remaining. PACAF and USAFE ended C-40B operations, transferring the aircraft to AMC at Andrews in 2019.

Contractor: Boeing.
First Flight: April 14, 1999 (C-40A).
Delivered: 2002-2007.
IOC: Feb. 28, 2003.
Production: 11.
Inventory: Four (C-40B); seven (C-40C).
Operator: AMC, ANG, AFRC.
Aircraft Location: JB Andrews, Md.; Scott AFB, Ill.
Active Variants:
- C-40B. Military version of the Boeing 737-700 with added winglets.
- C-40C. VIP configured Boeing 737-700 with added winglets, but lacking advanced comms.
Dimensions: Span 117.4 ft, length 110.3 ft, height 41.2 ft.
Weight: Max T-O 171,000 lb.
Power Plant: Two GE Aviation CFM56-7 turbofans, each 27,000 lb thrust.
Performance: Speed 530 mph, range 5,750 miles.
Ceiling: 41,000 ft.
Accommodation: Two pilots, flight attendant, crewchief; **Load:** Up to 89 passengers (B); up to 111 passengers (C).

C-130H HERCULES
Tactical airlift

Brief: The C-130H is an all-purpose theater transport that performs diverse roles, including tactical and inter-theater airlift and airdrop, AE, aerial spraying, aerial firefighting, and humanitarian support. The developmental YC-130A first flew in August 1954 with the C-130A entering USAF service in 1956. The H model improved on the later C-130E and was delivered starting in 1965, with delivery of the current, more advanced models starting in 1974. Improvements included uprated engines, redesigned outer wing, improved pneumatic systems, new avionics, improved radar, and NVG lighting. C-130Hs are being replaced by the C-130J. The ANG is upgrading 28 aircraft, including Modular Airborne Fire Fighting Systems (MAFFS)-equipped airframes, with eight-bladed NP2000 propellers to enhance performance and safety. The first modified airframe was redelivered to the Wyoming ANG in January 2018, and the ANG eventually aims to retrofit the entire fleet. The service grounded 60 aircraft for propeller blade inspection and replacement following a fatal Marine Corps accident, and a further 123 aircraft were inspected after wing-joint cracks were found in depot maintenance in 2019. Ongoing upgrades include critical center wing box replacement, electronic propeller controls/engine efficiency mods, and the C-130H Avionics Modernization Program (previously Viability and Airspace Access Program). AMP increment 1 adds new CNS/ATM to bring a total of 166 C-130H in compliance with U.S. and international airspace rules by January 2020. Increment 2 will add terrain awareness and warning, new flight management, and modern MFDs. USAF announced plans to cut 24 ANG airframes in FY21.

Contractor: Lockheed Martin.
First Flight: 1965 (C-130H).
Delivered: March 1965 onward (C-130H); April 1975-96 (current C-130H2/H3).
IOC: Circa 1974.
Production: 1,202 (C-130H).
Inventory: 171.
Operator: ANG, AFRC, AFSOC.
Aircraft Location: Dobbins ARB, Ga.; Little Rock AFB, Ark.; Maxwell AFB, Ala.; Minneapolis-St. Paul Arpt./ARS, Minn.; Peterson AFB, Colo. (MAFFS); Youngstown ARS, Ohio (Aerial Spray); and ANG in Arkansas, Connecticut, Delaware, Georgia, Illinois, Kentucky, Minnesota, Missouri, Montana, Nevada (MAFFS), Ohio, Texas, West Virginia, Wyoming (MAFFS).

Active Variant:
- C-130H Hercules. Updated late-production version of the legacy C-130.
- Dimensions: Span 132.6 ft, length 97.8 ft, height 38.8 ft; J-30 length 112.8 ft.
- Weight: Max T-O 155,000 lb; max payload 40,000 lb.
- Power Plant: Four Allison TS6-A-15, or Rolls-Royce T66 3.5 turboprops, each 4,591 shp.
- Performance: Speed 366 mph; range with 35,000 lb payload 1,486 miles.
- Ceiling: With max payload, 23,000 ft.
- Accommodation: Two pilots, navigator, flight engineer, loadmaster.
- Load: Up to 92 combat troops or 64 paratroopers or 74 litters or six cargo pallets or 16 Container Delivery System (CDS) bundles or any combination of these up to max weight.

C-130J SUPER HERCULES

Tactical airlift

Brief: The C-130J is the redesignated, current production version of the C-130 all-purpose theater transport. Missions include tactical and inter-theater airlift, airdrop, AE, wildfire suppression using the Modular Airborne Fire Fighting System (MAFFS), and humanitarian relief. The aircraft first deployed in combat in Southwest Asia in 2004. The Super Hercules features three-crew flight operations, more powerful engines, composite six-blade propellers, and digital avionics and mission computers. The C-130J can fly faster, higher, and farther than earlier C-130s. The C-130J-30 variant features a 15-foot longer “stretched” fuselage. The combined fleet is sustained via block upgrades. USAF is combining the future Block 7/8 upgrades to reduce modification down-time. Block 7 includes Link 16, new flight management systems, civil GPS, and a special mission processor. Block 8.1 adds improved LOS data link and BLOS comms, improved precision navigation aids, enhanced covert lighting, replaces UHF comms with satcoms, and updates mission planning systems. Block 8.J’s Mode 5 IFF and air traffic management upgrades will be fielded ahead of cycle to meet the FAA’s 2020 compliance deadline. Airframes delivered since 2009 incorporate enhanced service life center wings, and three of 21 early production airframes programmed will be retrofitted in 2020. The current multiyear contract procures 29 USAF C-130J-variants between FY19 and FY23 at a production rate of 16 aircraft per year.

Contractor: Lockheed Martin.
First Flight: April 5, 1996.
Delivered: February 1999-present.
IOC: October 2006.
Production: 2,600+ (all variants).
Inventory: 132.
Operator: AETC, AMC, PACAF, USAFE, ANG, AFRC.
Airframe Location: Dyess AFB, Texas; Little Rock AFB, Ark.; Ramstein AB, Germany; Yokota AB, Japan; and ANG in California, Kentucky, Rhode Island. Planned: Maryland.

Active Variants:
- C-130J-30 Super Hercules. Stretched version capable of accommodating larger loads.
- Dimensions: Span 132.6 ft, length 97.8 ft, height 38.8 ft; J-30 length 112.8 ft.
- Weight: Max T-O 155,000 lb (J), 164,000 lb (J-30); max payload 42,000 lb (J), 44,000 lb (J-30).
- Power Plant: Four Rolls-Royce AE2100D3 turboprops, each 4,700 shp.
- Performance: Speed 417 mph (J), 410 mph (J-30); range with 35,000 lb payload 1,841 miles (J), 2,417 miles (J-30).
- Ceiling: With max payload, 26,000 ft (J), 28,000 ft (J-30).
- Accommodation: Two pilots, loadmaster.
- Load: Up to 92 combat troops or 64 paratroopers or 74 litters or six cargo pallets or 16 Container Delivery System (CDS) bundles or any combination of these up to max weight.

LC-130H SKIBIRD

Arctic support/tactical airlift

Brief: The LC-130H is a ski-equipped, Arctic-support derivative of the C-130H. It is capable of direct resupply of Antarctic research stations and high-arctic radar sites utilizing ice and snowpack runways. The LC-130H fleet supports the National Science Foundation’s (NSF) Antarctic research, ferrying much of the material, provisions, and personnel between Christchurch, New Zealand, and McMurdo Station, Antarctica. The aircraft also provide ongoing support to the remote Amundsen-Scott South Pole Station. USAF began augmenting the Navy’s “Operation Deep Freeze” with the C-124 in 1956. C-130s began Antarctic support in 1959, operating without skis until the initial ski-borne deployment of the C-130D in January 1960. By 1975, the New York ANG’s 109th AW operated USAF’s only ski-equipped LC-130 supporting Distant Early Warning sites in the high-Arctic. The unit began augmenting Navy LC-130s during Deep Freeze in 1988, before taking over primary responsibility in 1999. Three aircraft were converted from ex-Navy LC-130Rs, and the NSF funded an additional three new-build aircraft in 1995-96. LC-130s have been upgraded with digital displays and flight management systems, multifunction radar, modernized comms, and a single air data computer. LC-130s are upgraded along with the baseline C-130H fleet, including wing box replacement, Mode 5 IFF, as well as the C-130H Avionics Modernization Program adding airspace-compliant CNS/ATM. Ice Pod experiments utilizing an aft, externally mounted sensor suite to record ice composition and density began in 2015. The pod includes radar, laser, and optical sensors. USAF began testing new, eight-bladed NP-2000 propellers to increase take-off performance by 20 percent and replace the dwindling stock of JATO (Jet-Assisted Takeoff) rockets in 2008. All 10 aircraft have now been upgraded with new propellers and engine enhancements. The research season ending in February 2019 marked the first time all participating LC-130s were equipped with NP-2000 propellers.

Contractor: Lockheed Martin.
First Flight: 1957 (ski-equipped C-130D).
Delivered: 1974-96.
IOC: January 1960 (C-130D).
Production: 10.
Inventory: 10.
Operator: ANG.
Airframe Location: Stratton ANGB, N.Y.

Active Variants:
- LC-130H Skibird. Arctic support variant with wheel-ski gear and eight-bladed propellers.
- Dimensions: Span 132.6 ft, length 97.8 ft, height 38.8 ft; Nose Ski 10 ft by six ft wide, main gear skis 12 ft by six ft wide.
- Weight: Max T-O 155,000 lb; max payload 45,000 lb.
- Power Plant: Four Rolls-Royce T56 3.5 turboprops, each 4,591 shp.
- Performance: Speed 366 mph; range with 35,000 lb payload 1,636 miles (with engine upgrades).
- Ceiling: With max payload, 23,000 ft.
- Accommodation: Two pilots, navigator, flight engineer, loadmaster.
- Load: Up to 92 passengers or 74 litters; six cargo pallets, 16 Container Delivery System (CDS) bundles, or any combination up to max weight.
VC-25 AIR FORCE ONE

Presidential airlift

Brief: The VC-25 is a specially configured Boeing 747-200B equipped for airlifting the President and his entourage. VC-25s operate under the call sign "Air Force One" when the President is aboard, and SAM (Special Air Mission) during non-presidential flights. Aircraft are equipped with staff work areas, a conference room, a general seating area, and an executive office. Communications capability includes worldwide secure and clear communications, data links. The aircraft also has a full, self-defense suite. The fleet is operated by the Presidential Airlift Group of the 89th Airlift Wing at JB Andrews. The VC-25A fleet has three years' estimated service life remaining and requires a life-extension/block upgrade to remain viable until replaced by the VC-25B (based on Boeing's modernized 747-8 Intercontinental). Block mods including protected satcom, chillers, a nitrogen-generation system, weather radar, digital/voice data, and network upgrades are slated for completion by mid-2020. SLEP is accomplished during regular depot maintenance. Flight deck upgrades include digital avionics, compliant CNS/ATM, Mode 5 IFF, Advisory Vertical Navigation, and other pilot situational awareness aids. USAF issued Boeing a $3.9 billion presidential aircraft replacement contract to modify two undelivered commercial 747-8s to VC-25B standards on Feb. 20, 2018. Work is underway modifying the airframes and delivery is slated for 2024. The current specification excludes aerial refueling capabilities have been deleted from requirements to reduce program cost.

Contractor: Boeing.
First Flight: Sept. 6, 1990 (VC-25A).
Delivered: August-December 1990.
Production: Two VC-25A; two VC-25B (undergoing modification).
Inventory: Two (VC-25A); two (VC-25B).
Operator: AMC.
Aircraft Location: JB Andrews, Md.
Active Variants:
• VC-25A. Specially configured presidential support version of the Boeing 747-200B.
• VC-25B. Next-generation presidential aircraft based on the Boeing 747-8 Intercontinental.
Dimensions: Span 195.8 ft, length 231.8 ft, height 63.4 ft (A); span 224.5 ft, length 250.2 ft, height 63.4 ft (B).
Weight: Max T-O 22,000 lb.
Power Plant: Two GE Aviation T700-GE-700/701C turboshafts, each 1,560-1,940 shp.
Performance: Max T-O 22,000 lb.
Rotor diameter 53.6 ft, overall length 64.7 ft, height 16.7 ft.
Weight: Max T-O 833,000 lb (A); max T-O 987,000 lb (B).
Power Plant: Four GE Aviation CF6-80C2B1 turbosfans, each 56,700 lb thrust (A); four GE Aviation GEnx-2B turbosfans, each 66,500 lb thrust (B).
Performance: Speed 184 mph; range 580 miles (farther with air refueling) (A); speed 660 mph, range 8,900 miles (B).
Ceiling: 45,100 ft.
Accommodation: Two pilots, navigator, flight engineer, up to 22 cabin and maintenance crew; Load: Up to 102 passengers (A); TBD (B).

HH-60 JOLLY GREEN II
Personnel recovery/medium lift

Brief: The HH-60W Pave Hawk II is an armed, all-weather day/night CSAR helicopter fielded to replace the HH-60G derived from the UH-60M Blackhawk. Additional missions include casualty/medical evacuation, disaster and humanitarian response, firefighting, and combat/utility support. The HH-60W features a fully digital glass cockpit, improved hot weather/high-altitude performance, onboard self-defenses capable of defeating higher-end threats, an enlarged cabin, and double the internal fuel capacity of the HH-60G. Features include digital RWR, laser/missile/hostile fire warning, integrated chaff/ flares, cabin and cockpit armor, externally mounted 7.62 mm and .50 cal weapons, LINK 16, SADL, integrated cockpit/cabin displays, advanced comms, ADSB, tactical moving map displays, upturned IR-masking exhausts, and efficient wide-chord rotor blades. USAF awarded Sikorsky Aircraft the $1.28 billion Combat Rescue Helicopter contract to replace the HH-60G on June 26, 2014. Early evaluations revealed shortcomings with radar interface, data links, RWR, rescue hoist, gun mounts, fuel cells, armor, and aircrew seats, which
were rectified with minimal delays. A total of nine HH-60Ws will support developmental testing at Eglin/Duke. USAF plans to procure a total of 112 HH-60Ws over eight lots through 2026. FY20 funds procure an initial 12 aircraft, and a full-rate production decision is expected in 2021. The helicopter made its initial flight from Sikorsky’s West Palm Beach, Fla., facility on May 17, 2019, developmental testing will stretch through the end of FY20, and operational testing will begin in FY21. A total of four aircraft each will be delivered to Moody and Kirtland to support maintenance training and initial operational employment. USAF announced the name “Jolly Green II” in 2020 honoring the legacy Vietnam-era HH-3 and HH-53.

Contractor: Lockheed Martin Sikorsky.

First Flight: May 17, 2019.

Delivered: 2019-present.

IOC: N/A.

Production: 112 (planned).

Inventory: None.

Operator: AFMC. Planned: ACC, AETC, PACAF, USAFE, ANG, AFRC.

Aircraft Location: Duke Field, Fla. Planned: Aviano AB, Italy; Davis-Monthan AFB, Ariz; Francis S. Gabreski Arpt., N.Y.; JB Elmdorf-Richardson, Alaska; Kadena AB, Japan; Kirtland AFB, N.M.; Moffett Field, Calif.; Moody AFB, Ga.; Nellis AFB, Nev.; Patrick AFB, Fla.

Active Variants:

- **HH-60W.** Developmental next-generation Combat Rescue Helicopter.

 Dimensions: Rotor diameter 53.6 ft, overall length 64.7 ft, height 16.7 ft.

 Weight: Max T-O 22,000 lb.

 Power Plant: Two GE Aviation T700-GE-701D turboshafts, each 1,857 shp.

 Performance: Speed 176 mph; range 690 miles (air refuelable).

 Ceiling: 20,000 ft.

 Armament: Two .50-caliber machine guns.

 Accommodation: Crew: two pilots, flight engineer, gunner. **Load:** Mission dependent.

MH-139 GREY WOLF

Missile field security/ light lift

Brief: The MH-139 is based on the Leonardo AW139 and is modified with mission-specific equipment, systems, and armament by prime contractor Boeing. Features include an open-architecture glass cockpit, weather radar, enhanced ground proximity warning, radar altimeter, engine IR signature reduction, and military UHF/satcoms. Modifications will include defensive systems such as chaff/flares and missile warning, cockpit and cabin ballistic protection, and crashworthy, self-sealing fuel tanks. AFGSC aircraft will be optionally armed with cabin-mounted .50 cal machine guns. USAF awarded Boeing the $2.4 billion MH-139 replacement contract on Sept 24, 2018, following cancellation of the earlier Common Vertical Lift Support Program (CVLSP). Requirements were driven by the MH-139’s primary ICBM field security and support role, but it will eventually replace UH-1Ns in the DV lift and aircrew survival training roles as well. The service plans to procure up to 84 MH-139s through 2026. The MH-139 will replace the current Light/Lift helicopter force with NVG-compatible cockpit, upgraded sensors, and safety and sustainment improvements. The ongoing SLEP of up to 63 airframes aims to bridge the gap until the MH-139 is fully fielded.

Contractors: Bell Helicopter; Lockheed Martin (TH-1H prime).

First Flight: April 1969 (UH-1N).

Delivered: September 1970-1974; November 2005-2013 (TH-1H).

IOC: October 1970 (UH-1N); circa 2009 (TH-1H).

Production: 28 (TH-1H); 79 (USAF UH-1Ns).

Inventory: 28 (TH-1H); 63 (UH-1N).

Operator: AETC, Air Force District of Washington, AFMC, PACAF.

Active Variants:

- **TH-1H.** Modified twin-engine version of UH-1H used for flight training.

 - **Dimensions:** Rotor diameter 48 ft; length 57 ft; height 13 ft.

 - **Weight:** Max gross 10,500 lb.

 - **Power Plant:** Two Textron Lycoming T53-L-703 turboshaft, 1,800 shp (TH-1H).

 - **Performance:** Speed 149 mph, range 300+ miles (UH-1N).

 - **Ceiling:** 15,000 ft (10,000 ft with 10,000+ lb).

- **Armament:** (Optional) two General Electric .50-cal machine guns or two 40
mm grenade launchers; two seven-tube 2.75-in rocket launchers.

Accommodation: Two pilots, flight engineer; **Load:** Six to 13 passengers (depending on fuel, equipment, and atmospheric conditions) or up to six litters or, without seats, bulky, oversize cargo (UH-1N).

TRAINER AIRCRAFT

T-1 JAYHAWK

Advanced trainer

Brief: The T-1A is a military version of the Beechcraft 400A business jet used in the advanced phase of JSUPT for tanker/transport pilot and CSO training pipelines. The cockpit seats an instructor and two students. Mods include UHF/VHF radios, INS, TACAN, airborne detection finder, increased bird-strike resistance, and an additional fuselage fuel tank. CSO training aircraft also incorporate GPS-driven SAR and simulated RWR, as well as new MFD and terrain collision avoidance systems. USAF awarded a $156 million Avionics Modernization Program (AMP) contract to replace the type’s obsolescent flight deck with a compliant avionics, improved canopy fracture system, and updated training aids and future plans would add controlled flight into terrain avoidance. Development includes Next-Generation Onboard Oxygen Generation System (OBOGS) to combat the hypoxia-like incidents that grounded the fleet in 2018. Improved maintenance and inspections will mitigate risk until fleetwide retrofit is complete. A single T-6 was lost in a non-related training accident near Sheppard on May 1, 2019, USAF plans to buy three AT-6 Wolverines in 2020 (in addition to an equal number of AFSC A-29 Super Tucanos) to continue experimentation with a rapidly procurable, exportable, light CAS/ISR aircraft. AT-6s will be assigned to ACC at Nellis.

Contractor: Beechcraft/Textron Aviation Defense (formerly Raytheon).

First Flight: July 15, 1998.

Delivered: May 2000-May 2010.

IOC: May 2000.

Production: 452 (USAF); 328 (USN).

Inventory: 443 (USAF).

Operator: AETC, USN. Planned: ACC (AT-6).

Aircraft Location: USAF: Columbus AFB, Miss.; Laughlin AFB, JBSA-Randolph, and Sheppard AFB, Texas; Vance AFB, Okla.; NAS Pensacola, Fla. Planned: Nellis (AT-6).

Active Variants:

- **T-6A.** Joint service primary training aircraft, based on the Pilatus PC-9.
- **AT-6 Wolverine.** Experimental light attack/armed reconnaissance variant.

Dimensions: Span 33.5 ft, length 33.4 ft, height 10.7 ft.

Weight: Basic 6,500 lb.

Power Plant: One Pratt & Whitney Canada PT6A-68 turboprop, 1,100 shp.

Performance: Speed 320 mph, range 1,035 miles.

Ceiling: 31,000 ft.

Accommodation: Two pilots on Martin Baker MK16LA zero/zero ejection seats.

T-38 TALON

Advanced trainer

Brief: The T-38 was the first supersonic trainer aircraft and primarily serves AETC’s advanced JSUPT fighter/bomber tracks and Introduction to Fighter Fundamentals. The aircraft is used to teach supersonic techniques, aerobatics, formation, night and instrument flying, and cross-country/low-level navigation. The T-38 is also used by the USAF Test Pilot School to train test pilots and flight-test engineers and by ACC and AFSC as a companion trainer to maintain pilot proficiency. ACC uses regenerated T-38s as dedicated Aggressor aircraft for F-22 training. T-38s are equipped with a gunsight and centerline station for mounting external stores including ECM pod/practice bomb dispensers. Aircraft were redesignated T-38Cs after avionics modernization that added a glass cockpit and HUD, color MFDs, mission computer, integrated INS/GPS, and reshaped engine inlets. Sustainment measures include replacing major engine components to improve reliability and maintainability. T-38s were designed for 7,000 flying hours but many have surpassed 20,000 hours, requiring life-extension prior to reaching their 2034 replacement date. Pacer Classic III is the type’s third structural renewal effort and the most intensive in its history. It replaces major longerons, bulkheads/
formers, intakes, internal skins, and structural floors on 180 high-risk T-38Cs. The first airframe was redelivered in 2015. Additional upgrades include wing replacement, digital avionics, replacement HUD, VHF nav/ comms, and airspace compliance and safety mods. FY20 begins forward canopy replacement to improve bird-strike survivability. USAF awarded Boeing/Saab a $9.2 billion T-X contract to replace the T-38 on Sept. 20, 2018. The first of up to 475 T-7A Red Hawks are slated for delivery to Randolph in 2023.

Contractors: Northrop Grumman; CPI Aerostructures (Pacer Classic III kits); Israel Aerospace Industries (re-wing).
First Flight: April 1959 (T-38A); July 8, 1998 (T-38C).
Delivered: 1961-72 (T-38A); 2002-07 (T-38C).
IOC: March 1961.
Production: 1,187.
Inventory: 53 (T-38A); 6 (AT-38B); 442 (T-38C).
Operator: ACC, AETC, AFGSC, AFMC.
Aircraft Location: Beale AFB and Edwards AFB, Calif.; Columbus AFB, Miss.; Holloman AFB, N.M.; JB Langley-Eustis, Va.; JBSA-Randolph and Sheppard AFB, Texas; JB Langley-Eustis, Va.; Vance AFB, Okla.; White- man AFB, Mo.
Active Variants:
• T-38A. Upgraded version with Pacer Classic I and II mods.
• AT-38B. Armed weapons training version.
• T-38C. Modernized airframes incorporating glass cockpits and upgraded engines.
Dimensions: Span 25.3 ft, length 46.3 ft, height 12.8 ft.
Weight: Max T-O 12,093 lb.
Power Plant: Two General Electric J85-GE-5 turbojets, each 2,900 lb thrust with afterburning.
Performance: Speed 812 mph, range 1,093 miles.
Ceiling: 55,000 ft +.
Accommodation: Two pilots on Martin Baker MK16T zero/zero ejection seats.

UV-18 TWIN OTTER
Utility

Brief: The UV-18 is a military variant of the civilian De Havilland Canada DHC-6 Twin Otter. It serves USAFA, supporting various parachuting and general utility missions. Special use includes supporting the Air Force Academy parachute team, Wings of Blue. The UV-18 is designed for 40,000 flying hours. Upgrades are limited to FAA-mandated airworthiness compliance mods.

Contractor: De Havilland Canada.
First Flight: May 1965 (commercial version).
Production: Three.
Inventory: Three.
Operator: AETC.
Aircraft Location: Peterson AFB, Colo.
Active Variant:
• UV-18B. Military variant of the DHC-6 Twin Otter.
Dimensions: Span 65 ft, length 51.9 ft, height 18.7 ft.
Weight: Max T-O 12,500 lb.
Power Plant: Two Pratt & Whitney Canada PT6A-27 turboprops, each 620 shp.
Performance: Speed 210 mph, range 806 miles.
Ceiling: 25,000 ft.
Accommodation: Two pilots; Load: Up to 20 passengers/parachutists.

FULL-SCALE AERIAL TARGETS

QF-16 FULL-SCALE AERIAL TARGET
Full-scale aerial target

Brief: QF-16 is a manned/unmanned aerial target and threat simulator serving USAFA’s Powered Flight Program which conducts some 12,600 annual training and competition-flying hours. The aircraft is dubbed “Kadet” in reference to the Boeing/Stearman PT-17, which was the USAAF’s mainstay primary training aircraft during WWII. It is an all-composite monoplane with advanced avionics and safety features that include GPS, Cirrus Airframe Parachute System, integrated fuselage roll-cage, cuffed wing design, and other active and passive safety systems standard on Cirrus aircraft. T-53s are designed for 12,000 flying hours. Upgrades are limited to FAA-mandated airworthiness compliance mods and simulator updates.

Contractor: Cirrus.
Delivered: 2012.
Inventory: 24.
Operator: AETC.
Aircraft Location: USAFA, Colo.
Active Variant:
• T-53A. Military designated Cirrus SR20.
Dimensions: Span 38.3 ft, length 26 ft, height 8.9 ft.
Weight: Max T-O 12,093 lb.
Performance: Speed 178 mph, range 690 miles.
Ceiling: 17,500 ft.
Accommodation: Two pilots, three passengers.
aircraft in 2016, and ongoing operational testing includes a comprehensive cyber security evaluation. Ongoing efforts include developing EA pods/pod improvements and software to more accurately replicate adversary capabilities and tactics, ground-control modernization, and threat realism/countermeasure improvements.

Contractors: Lockheed Martin; Boeing (drone conversion).

Delivered: February 2015-present.

Production: 126 (planned).

Inventory: 9 (QF-16A); 30 (QF-16C).

Operator: ACC.

Aircraft Location: Tyndall AFB, Fla., Holloman AFB, N.M.

Active Variants:
• QF-16A. Converted from retired F-16A Block 15.
• QF-16C. Converted from retired F-16C Block 25 and Block 30.

Dimensions: Span 32.8 ft, length 49.3 ft, height 16.7 ft.

Weight: Max T-O 37,500 lb.

Power Plant: Pratt & Whitney F100-PW-200 turbofan, 23,830 lb thrust (Block 15); Pratt & Whitney F100-PW-220 turbofan, 23,830 lb thrust (Block 25); GE Aviation F110-GE-100 turbofan, 29,000 lb thrust (Block 30).

Performance: Speed Mach 2, ferry range 2,000+ miles.

Ceiling: 50,000 ft.

Defensive Systems: Chaff/flares; EA pods: ALQ-188, ALQ-167.

Accommodation: Safety pilot (optional) on ACES II zero/zero ejection seat.

MQ-9 REAPER

Attack/armed reconnaissance

Brief: The MQ-9 is a medium-to-high-altitude, long-endurance hunter-killer RPA, primarily tasked with eliminating time-critical and high-value targets in permissive environments. Additional roles include CAS, CSAR, precision strike, armed overwatch, target development/designation, and terminal weapon guidance. The MQ-9 fulfills a secondary tactical ISR role utilizing its Multispectral Targeting System-B (MTS-B), Lynx SAR, and/or Gorgon Stare wide-area surveillance. MTS-B integrates EO/IR, color/monochrome daylight TV, image-intensified TV, and a laser designator/illuminator. MTS-B provides FMV as separate video streams or fused together, and the MQ-9 employs SAR for JDAM targeting and dismounted target tracking. MQ-9 debuted in combat in Afghanistan in 2007. A Reaper system comprises three aircraft, GCS, LOS/BLOS satellite and terrestrial data links, support equipment/personnel, and crews for deployed 24-hour operations. MQ-9 is retrofitted under a flexible acquisition structure, which can rapidly change to meet demand. Current efforts include the new DAS-4 high-definition EO/IR sensor to improve targeting accuracy; fuselage mods to improve system cooling, bandwidth-efficient data links, enhanced JDAM targeting, and more modular weapons into face softwar. Long-term fixed programs include Block 5 aircraft/Block 30 GCS, and the Extended-Range Reaper which entered combat in 2015. Reaper ER adds external fuel tanks, a four-bladed propeller, engine alcohol/water injection, heavyweight landing gear, longer wings and tail surfaces, and other enhancements. USAF plans to upgrade the entire fleet to ER standards, comprising 165 Block 1 and 136 Block 5 aircraft. FY20 funding supports MQ-9 Block 5 and GCS Block 30, upgraded Lynx SAR and Gorgon Stare, reliability and maintainability mods, ER kits, and capability upgrades. FY20 also procures 12 new-build MQ-9s. An MQ-9 notably killed the head of Iran’s Revolutionary Guard in an airstrike near Baghdad International Airport on Jan. 3, 2020. USAF announced it plans to end MQ-9 procurement beyond FY21, capping the fleet at 337 aircraft.

Contractors: General Atomics Aeronautical Systems; L3Harris; Raytheon (sensors).

Delivered: November 2003-present.

IOC: October 2007; 2015 (ER).

Production: 346 (planned).

Inventory: 269.

Operator: ACC, AFMC, AFSOC, ANG.

Active Variants:
• MQ-9B Reaper Block 1. Air Force version of the General Atomics Predator B.
• MQ-9B Reaper Block 5. Improved, current production Reaper.
• MQ-9B Reaper ER. Extended-range MQ-9 with external fuel tanks, longer wings, and other enhancements.

Dimensions: Span 66 ft (79 ft, ER), length 36 ft, height 12.5 ft.

Weight: Max T-O 10,500 lb.

Power Plant: One Honeywell TPE331-10GD turboprop, max 900 shp.

Performance: Cruise speed 230 mph, range 1,150 miles, endurance 27 hr; 34 hr (ER).

Ceiling: 50,000 ft.

Armament: Combination of AGM-114 Hellfire, GBU-12/49 Paveway II, and GBU-38 JDAMs.

Accommodation: Pilot, sensor operator (operating from GCS).

RQ-4 GLOBAL HAWK

High-altitude reconnaissance

Brief: The Global Hawk is a strategic long-endurance, high-altitude, “deep look” ISR platform complementing satellite and manned ISR. It is capable of imagery, SIGINT, and ground moving target indication (GMTI), depending on variant. The system consists of the aircraft and sensors, launch and recovery element (LRE), mission control element (MCE), and comms/mission planning cell. The Block 10 debut in combat in 2001 ahead of production and retired in 2011. Block 20 was initially equipped with the Enhanced Integrated Sensor Suite (EISS) for imagery intelligence (IMINT). Five were converted as EQ-4B Battlefield Airborne Communications Node (BACN) relays, and four are active following a loss replacement in 2018. Block 30 is a multi-intelligence platform equipped with EO/IR, SAR, and SIGINT sensors. Block 40 is a ground moving target surveillance platform equipped with the Multiplatform Radar Technology Insertion Program (MP-RTIP). Its AESA and SAR simultaneously conduct moving target and cruise missile tracking, as well as stationary imagery collection. ASIP is installed on three airframes with plans to equip an additional eight. The universal payload adapter enables U-2-unique sensors including the MS-117 and SYERS II EO sensors, and a wet-film Optical Bar Camera to be carried.
Two Block 30s were retrofitted with MS-117 for development and a total of six sensors will be delivered through 2020 to meet a congressional mandate to match the U-2. FY20 funds support adding weather radar and anti-icing, as well as Ground Segment Modernization, FAA-mandated airspace compliant Mode S/ADS-B, sensor enhancements including a new, higher resolution EO camera, and increased onboard data storage. BACN EQ-4Bs will be upgraded with 5th-to-4th Generation Gateway to enable comm/data transfer between the F-22, F-35, and legacy aircraft. Ground Segment Modernization installs upgraded “cockpits” starting with Beale and Grand Forks this year. USAF announced plans to retire the EQ-4B and RQ-4B Block 30 in FY21, retaining only the Block 40.

Contractors: Northrop Grumman; Raytheon; L3Harris.
First Flight: Feb. 28, 1998.
Delivered: August 2003-present.
IOC: August 2011 (Block 30); August 2016 (Block 40).
Production: 45 (USAFA).

RQ-170 SENTINEL

Unmanned surveillance and reconnaissance

Brief: RQ-170 is an unmanned, stealthy, penetrating, day/night tactical ISR platform. Although the RQ-170 was still under development and test, USAF employed it in Southwest Asia for Enduring Freedom. The RPA was developed in response to DOD’s call for additional RPA support for combatant commanders. USAF publicly acknowledged the aircraft after photos appeared in foreign news media of operations over Afghanistan in 2009. The type is operated by the 432nd Wing at Creech and the 30th Reconnaissance Squadron at Tonopah Test Range. In 2011, an RQ-170 in Iran crashed and was captured almost intact. Iran allegedly reverse-engineered a copy of the aircraft, which the Israeli Air Force reported shooting down during an engagement inside Israeli territory on Feb. 10, 2018.

Contractor: Boeing.
First Flight: June 1979 (full-scale development).
Delivered: 1981-1986.
IOC: December 1982 (B); January 1991 (C); November 2001 (D).
Production: 1,715.
Delivered: First flight: 1982.
Inventory: 536 (B), 186 (C), 34 (D).
Operator: AFGSC.
Unit Location: Barksdale AFB, La.; Minot AFB, N.D.

Active Variants:
- **AGM-86-B:** Nuclear ALCM variant.
- **AGM-86-C:** Conventional CALCM variant.
- **AGM-86-D:** Penetrating CALCM Block II variant.

Dimensions: Span 130.9 ft, length 47.6 ft, height 15.3 ft.

Weight: Max T-O 32,250 lb; max payload 3,000 lb.

Power Plant: One Rolls-Royce North American F137-RR-100 turbofan, 7,600 lb thrust.

Performance: Speed 356.5 mph, range 14,150 miles, endurance 32+ hrs (24 hrs on-station loiter at 1,200 miles).

Ceiling: 60,000 ft.

Accommodation: LRE pilot, MCE pilot, MCE sensor operator (operating from LRE/MCE).

B61 THERMONUCLEAR BOMB

Air-to-surface thermonuclear bomb

Brief: B61 is an air-dropped battlefield/tactical nuclear weapon. It is the B-2’s primary strategic weapon and equips both the F-16 and F-15E in the forward-deployed, allied extended deterrent role. The weapon was first delivered in 1966, and the most recent B61 Mod 11 introduced in 1997 adds a ground-penetrating capability, enhancing its effect against buried and hardened targets. The weapon incorporates several preselectable yield options tailored to mission requirements. Work is underway on the B61 Mod 12 Life Extension Program (LEP). Production engineering work began in 2016 to eventually consolidate the B61-3, -4, -7, and -10 weapons into a single, standardized configuration. USAF and National Nuclear Security Administration qualification flight testing completed June 9, 2018, included 31 inert test drops and greatly exceeded required performance. These drops validated nonnuclear components, such as arming/fire

Contractor: Boeing.
First Flight: June 1979 (full-scale development).
Delivered: 1981-1986.
IOC: December 1982 (B); January 1991 (C); November 2001 (D).
Production: 1,715.
Delivered: First flight: 1982.
Inventory: 536 (B), 186 (C), 34 (D).
Operator: AFGSC.
Unit Location: Barksdale AFB, La.; Minot AFB, N.D.

Active Variants:
- **AGM-86-B:** Nuclear ALCM variant.
- **AGM-86-C:** Conventional CALCM variant.
- **AGM-86-D:** Penetrating CALCM Block II variant.

Dimensions: Span 130.9 ft, length 47.6 ft, height 15.3 ft.

Weight: Max T-O 32,250 lb; max payload 3,000 lb.

Power Plant: One Rolls-Royce North American F137-RR-100 turbofan, 7,600 lb thrust.

Performance: Speed 356.5 mph, range 14,150 miles, endurance 32+ hrs (24 hrs on-station loiter at 1,200 miles).

Ceiling: 60,000 ft.

Accommodation: LRE pilot, MCE pilot, MCE sensor operator (operating from LRE/MCE).

B61 THERMONUCLEAR BOMB

Air-to-surface thermonuclear bomb

Brief: B61 is an air-dropped battlefield/tactical nuclear weapon. It is the B-2’s primary strategic weapon and equips both the F-16 and F-15E in the forward-deployed, allied extended deterrent role. The weapon was first delivered in 1966, and the most recent B61 Mod 11 introduced in 1997 adds a ground-penetrating capability, enhancing its effect against buried and hardened targets. The weapon incorporates several preselectable yield options tailored to mission requirements. Work is underway on the B61 Mod 12 Life Extension Program (LEP). Production engineering work began in 2016 to eventually consolidate the B61-3, -4, -7, and -10 weapons into a single, standardized configuration. USAF and National Nuclear Security Administration qualification flight testing completed June 9, 2018, included 31 inert test drops and greatly exceeded required performance. These drops validated nonnuclear components, such as arming/fire

Contractor: Boeing.
First Flight: June 1979 (full-scale development).
Delivered: 1981-1986.
IOC: December 1982 (B); January 1991 (C); November 2001 (D).
Production: 1,715.
Delivered: First flight: 1982.
Inventory: 536 (B), 186 (C), 34 (D).
Operator: AFGSC.
Unit Location: Barksdale AFB, La.; Minot AFB, N.D.

Active Variants:
- **AGM-86-B:** Nuclear ALCM variant.
- **AGM-86-C:** Conventional CALCM variant.
- **AGM-86-D:** Penetrating CALCM Block II variant.

Dimensions: Span 130.9 ft, length 47.6 ft, height 15.3 ft.

Weight: Max T-O 32,250 lb; max payload 3,000 lb.

Power Plant: One Rolls-Royce North American F137-RR-100 turbofan, 7,600 lb thrust.

Performance: Speed 356.5 mph, range 14,150 miles, endurance 32+ hrs (24 hrs on-station loiter at 1,200 miles).

Ceiling: 60,000 ft.

Accommodation: LRE pilot, MCE pilot, MCE sensor operator (operating from LRE/MCE).
technology maturation and risk-reduction contracts to replace Minuteman with a future Ground-Based Strategic Deterrent (GBSD) in 2017. Boeing declined to bid on full development in 2019, leaving Northrop Grumman to develop GBSD. Flight testing of a replacement fuze began in February 2019 and will culminate with the last of four test launches in 2024.

Contractors: Boeing; General Electric; Lockheed Martin; Northrop Grumman (formerly Orbital ATK)

First Flight: February 1961.

Delivered: 1962-1978.

IOC: December 1962, Malmstrom AFB, Mont.

Production: 1,800.

Inventory: 398 deployed; 265 non-deployed.

Operator: AFGSC.

Unit Location: F. E. Warren AFB, Wy.; Malmstrom AFB, Mont.; Minot AFB, N.D.; Vandenberg AFB, Calif. (test location).

Active Variant: LGM-30G. Current Minuteman III variant.

Dimensions: Length 59.9 ft, diameter 5.5 ft.

Weight: 79,432 lb.

Propulsion: Stage 1: Orbital ATK refurbished M55 solid-propellant motor, 202,600 lb thrust; stage 2: Orbital ATK refurbished SR19 solid-propellant motor, 60,721 lb thrust; stage 3: Orbital ATK refurbished SR73 solid-propellant motor, 34,400 lb thrust.

Performance: Speed at burnout approx 15,000 mph, range 6,000+ miles.

Guidance: Inertial guidance system.

Re-entry Vehicle: One Mk 21 RV; one to three Mk 12/12A MIRVs.

Warhead: One W87 or up to three W78 enriched uranium thermonuclear weapons.

LGM-30 MINUTEMAN III

Strategic surface-to-surface ballistic missile

Brief: Minuteman is a three-stage, solid-propellant nuclear deterrent ICBM housed in a survivable underground silo. Minuteman III became operational in 1987, providing improved range, rapid retargeting, and the capability to place up to three reentry vehicles on three targets with high accuracy. It is the sole remaining US land-based ICBM. Ongoing mods include updated warhead fuses, networking, and cryptography upgrades. FY18 began the Launch Control Center Block Upgrade (LCCBU), which replaces key hardware, software, comms, and environmental control systems in the crew capsule, as well as starting new missile site-security and video situational awareness upgrades. Guidance and propulsion upgrades and modernized reentry vehicles extend service life to 2030. New efforts include developing a replacement to the current, obsolete airborne launch system fielded aboard the Navy’s E-6B Mercury aircraft. AFGSC is also undertaking Launch Control Center AEHF integration to modernize and enhance comms redundancy. AFGSC initially deployed 550 missiles, later reducing that number to 400 based at Malmstrom, Minot, and F.E. Warren. AFGSC completed reducing its deployed ICBMs to a single-warhead configuration in 2014, under limits imposed by the New START agreement. USAF awarded Boeing and Northrop Grumman

ADM-160 MINIATURE AIR LAUNCHED DECAY (MALD)

Aircraft decoy; close-in radar jammer

Brief: MALD is a programmable, low-cost, modular, autonomous flight vehicle that mimics U.S. or allied aircraft to confuse enemy Integrated Air Defense Systems (IADS). MALD-J adds radar jamming capability to the basic decoy platform and can operate alone or in concert with other EW platforms. The jammer version is designed as an expendable, close-in jammer to degrade and deny an early warning or acquisition radar’s ability to establish a track on strike aircraft. It also maintains the ability to fulfill the basic decoy mission. F-16 or B-52 are lead employment aircraft for MALD. USAF capped procurement in FY12, converting Lot 4 to the MALD-J variant. Plans call for 3,000, of which 2,400 are the jammer version. USAF demonstrated in-flight retargeting capabilities and is integrating GPS-Aided Inertial Navigation System (GAINS II) to improve navigational accuracy in GPS-denied environments. An upgraded Jammer variant dubbed “MALD-X” successfully demonstrated future, low-level flight capabilities, improved EW payloads, and enhanced data links in 2018. MALD-X aims to establish USAF’s future baseline and serve as the basis for a new Navy variant. USAF awarded a MALD-J contract option for Lot 10 production in 2016 and a follow-on Lot 11 contract for 250 weapons in 2018.

Contractor: Raytheon.

First Flight: 1999 (MALD); 2009 (MALD-J).

Delivered: September 2012 (MALD-J).

IOC: 2015 (MALD-J).

Active Variants:

- ADM-160B. MALD base decoy variant.
- ADM-160C. MALD-J jammer/decoy variant.

Dimensions: Span 5.6 ft (extended), length 9.3 ft.

Weight: Less than 300 lb.

Performance: Range up to 575 miles, endurance 90 minutes (50 minutes on-station loiter).

Guidance: GPS/INS.

Integration: B-52H, F-16C.
AGM-154 JOINT STANDOFF WEAPON (JSOW)

Guided air-to-surface glide bomb

Brief: JSOW is a joint USAF-Navy family of medium-range, GPS/INS guided, standoff air-to-ground glide weapons. It is used to attack a variety of soft and armored area targets during day and night and adverse weather conditions. The baseline BLU-97 CEM variant is used against soft and area targets. The BLU-108 variant provides anti-armor capability. The AGM-154C incorporates an additional imaging IR seeker and is intended for use against hardened, stationary targets. The new AGM-154C-1 variant adds moving, maritime strike capability to the baseline C variant, which reached IOC with the Navy in 2018. The weapon completed operational flight testing on the F-35C in 2019, clearing the way for integration and testing on the F-35A.

Contractor: Raytheon.
Delivered: 2000-05 (USAF).

Active Variants:
• AGM-154A. Baseline BLU-97 CEM variant for soft/area targets.
• AGM-154B. The BLU-108 submunition variant for anti-armor.
• AGM-154C. Imaging IR-guided variant for hardened tactical targets.

Dimensions: Length 13.3 ft, diameter 13 in.
Performance: Range 13.8 miles low altitude, 73 miles high altitude.
Guidance: GPS/INS.
Warhead: See variants above.

AGM-158 JOINT AIR-TO-SURFACE STANDOFF MISSILE (JASSM)

Air-to-surface cruise missile

Brief: JASSM is a joint USAF-Navy autonomous, precision cruise missile for use against heavily defended or high-value targets at standoff range. It can attack fixed, relocatable, and moderately hardened/buried targets. The base-variant is a stealthy, low-cost airframe equipped with GPS/INS guidance and imaging IR terminal seeker. The JASSM-Extended Range (JASSM-ER) version uses the same baseline body, but a new engine and fuel system that increases range to more than 500 miles. The ER variant was cleared for combat use on the B-1B in 2015. The variant reached full operational capability on the F-15E in 2018, and is planned for use on all fighter/bomber platforms. It is currently undergoing integration on the F-16C/D. Full-rate production of the ER began the same year, and JASSM production shifted to ER-only in FY16. Total planned production includes 2,034 JASSMs and 2,866 JASSM-ERs. JASSM-ER development has resulted in the “extreme range” JASSM-XR, which is slated for future production. Lockheed Martin is developing the Long-Range Anti-Ship Missile (LRASM) variant for both the Air Force and Navy. LRASM reached early operational capability on the B-1B in December 2018, and USAF is pursuing additional fielding on the B-52. The service is considering topping total procurement to as many as 10,000 JASSMs and 400 LRASMs. FY20 funds support procurement of 430 JASSM-ER and initial procurement of the extreme-range variant.

Contractors: Lockheed Martin; Raytheon; Honeywell.
First Flight: April 8, 1999.
Delivered: Through FY19.
IOC: September 2003; December 2014 (ER variant); 2018 (LRASM).

Production: 7,200 JASSM (planned); 50 LRASM (planned).

Active Variants:
• AGM-158A JASSM. Base-variant.
• AGM-158B JASSM-ER. Extended-range variant.
• AGM-158C LRASM. Long-Range Anti-Ship Missile, based on JASSM.
• AGM-158D JASSM-XR. Future extreme-range variant of JASSM-ER.

Dimensions: Length 14 ft.
Power Plant: Teledyne Technologies J402 turbojet (JASSM); Williams Intl. F107-WR-105 turbofan (JASSM-ER).
Performance: Speed subsonic, range 200+ miles (baseline), 500+ miles (ER).
Guidance: GPS/INS and imaging IR terminal seeker.
Warhead: 1,000-lb class penetrator (JASSM); 1,000-lb blast fragmentation (LRASM).

AIM-9 SIDEWINDER

Air-to-air missile

Brief: Sidewinder is an IR-guided short-range, supersonic air-to-air missile. It was developed by the Navy for fleet air defense and adapted for USAF fighters. Early versions were used extensively in the Vietnam War. The AIM-9M is a joint Navy-USAF, all-altitude, all-aspect intercept missile. It has improved defense against IR countermeasures, background discrimination, and reduced-smoke rocket motor. AIM-9X is the newest jointly funded variant. It employs passive IR tracking, jet-vane steering for increased maneuverability, and Joint Helmet-Mounted Cueing System (JHMCS) compatibility for high, off-boresight capability. The current production AIM-9X Block 2 was cleared for full-rate production in September 2015, and an F-35A conducted its first live-fire with the weapon in early 2016. Ongoing development includes control actuation, IR counter-countermeasures, improved lock-after-launch, added partial/ degraded cue capability, and improved small target acquisition and surface attack capability. FY20 production missiles will add a redesigned dome, inertial measuring unit, and processor. AIM-9X production includes 67 converted AIM-9Ms, 1,289 Block 1, and a planned 6,309 Block II (including the newly developed Block II-plus, incorporating enhanced survivability features). FY20 funds procure a combined 355 AIM-9X Block II/II-plus.

Contractor: Raytheon; Northrop Grumman (propulsion).
First Flight: September 1953.
Delivered: AIM-9M 1983; AIM-9X from 2002-2011 (Block I); 2011 to present (Block II); 2017-present (Block II-plus).
IOC: Circa 1983 (9M); 2003 (9X).

Production: 1,289 (Block I); 6,309 (Block II/Block II+) (planned).
Active Variants:
- AIM-9M. Early variant.
- AIM-9X. Newest, highly maneuverable, JHMCS compatible variant.

Dimensions: Span 2.1 ft, length 9.4 ft, diameter 5 in.

Propulsion: Mk 36 Mod 11 (9M); Orbital ATK Mk 139 solid-propellant rocket motor (9X).

Performance: Speed Mach 2+, range 10+ miles.

Warhead: HE annular blast fragmentation.

AIM-120 ADVANCED MEDIUM-RANGE AIR-TO-AIR MISSILE (AMRAAM)

Air-to-air guided missile

Brief: AMRAAM is an active radar-guided, medium-range, supersonic air-to-air missile. It is a joint USAF-Navy follow-on to the AIM-7 Sparrow with launch-and-maneuver capability. The AIM-120B is an upgraded, reprogrammable variant of the original missile. The AIM-120C incorporates smaller control surfaces for internal carriage on F-22 and F-35 and a high-angle off-boresight (HOBS) launch capability. AIM-120D completed operational testing in 2014 and was fielded in 2015. The latest variant offers improved range, GPS-assisted guidance, updated data links, and jam resistance, in addition to greater lethality. Ongoing upgrades will further enhance weapon performance and electronic protection. The second phase of the AIM-120D System Improvement Program (SIP II) completed operational testing and will be fielded in 2020. Cybersecurity testing was concluded in mid-2019. FY20 funds procure 220 AIM-120D missiles. In 2019, USAF announced it is developing the AIM-260 Joint Air Tactical Missile (JATM) in mid-2019. FY20 funds procure 5,400 APKWS guidance kits. An F-16 successfully destroyed an airborne target using APKWS as part of an anti-cruise missile demo in 2019.

Contractor: BAE Systems.

First Flight: May 2013 (USAF).

Delivered: October 2012-present.

IOC: N/A.

Active Variant:
- AGR-20A. Semi-active, laser-guided 2.75-in rocket, adapted for fixed-wing use.

Dimensions: Span 9.5 in, length 6.25 ft, diameter 2.75 in.

Propulsion: Solid-propellant rocket motor.

Performance: Subsonic, range 1.2 to 6.8 miles.

Guidance: Semi-active laser.

Warhead: HE, white phosphorous, or illuminating round.

Integration: A-10, F-16 (tests also conducted on AT-6).

AGM-65 MAVERICK

Air-to-surface guided missile

Brief: Maverick is a TV, imaging IR, or laser-guided standoff air-to-surface missile employed by fighter/attack aircraft against tanks, vehicles, and air defenses. It was first employed during the Vietnam War and was used extensively in Desert Storm and Iraqi Freedom. AGM-65B is a launch-and-leave, EO/TV guided missile, equipped with "scene magnification" allowing acquisition of small/distant targets. Fielded in 1986, AGM-65D employs an imaging IR seeker for all-weather day/night use. The AGM-65E is laser guided with a heavyweight penetrator warhead. The AGM-65G fielded in 1989 combines an imaging IR seeker, software to track larger targets, with a heavyweight penetrator warhead, digital autopilot, and a pneumatic actuation system. The AGM-65H is an upgraded B variant that recently completed tracker upgrades. The AGM-65K is a modified G variant, replacing IR guidance with EO TV guidance and is also undergoing a tracker upgrade. The AGM-65L is the newest EO TV/semiactive-laser seeker equipped "Laser Maverick" designed to strike high-speed moving targets. FY19 contingency funds modified 293 legacy missiles to Laser Maverick standards and replenished weapons expended in combat. FY20 budget does not include additional procurement.

Contractors: Raytheon (missile body); Northrop Grumman (propulsion).

First Flight: August 1969.

Delivered: August 1972.

IOC: February 1973.

Active Variants:
- AGM-65A. A launch-and-leave EO TV seeker variant.
- AGM-65D. Adverse weather B variant.
- AGM-65E. Laser guided version heavyweight penetrator variant.
- AGM-65G. Imaging IR seeker heavyweight penetrator variant.
- AGM-65H. Upgraded B variant.
- AGM-65K. Modified EO TV seeker G variant.
- AGM-65L. AGM-65G extended range, high angle-of-attack, EO TV seeker variant.

Dimensions: Span 2.3 ft, length 8.2 ft, diameter 12 in.

Propulsion: Two-stage, solid-propellant rocket motor.

Performance: Supersonic, range 20 miles.

Guidance: EO TV guidance system (B/H/K); Imaging IR seeker (D/G); laser seeker (E).

Warhead: 125-lb cone-shaped (B/D/H); 300-lb delayed-fuse penetrator (E/G/K).

Integration: A-10C, F-15E, F-16C/D.
Air-to-Ground Missile (JAGM) via the Army. JAGM adds a new multi-mode guidance section to the AGM-114R propulsion, warhead, and control section for use against high value moving or stationary targets in all weather.

Contractors: Lockheed Martin (missile body); Northrop Grumman (propulsion).

First Flight: Feb. 16, 2000 (USAF).

Delivered: March 2016-present.

IOC: N/A.

Active Variants:
- AGM-114. Numerous subvariants, depending on target and mission requirements.
- AGM-169. JAGM, incorporating a multimode seeker on the advanced AGM-114R.

Dimensions:
- Span 28 in, length 5.33 ft, diameter 17 in.

Propulsion: Solid-propellant rocket motor.

Performance: Subsonic, range 5+ miles.

Guidance: EO TV guidance system (B/H/K); IIR seeker (D/G); laser seeker (E).

Warhead: Shaped charge and blast fragmentation.

Integration: MQ-9.

AGM-176 GRIFFIN

Air-to-surface guided missile

Brief: Griffin is a light, low-cost, multiservice air-launched weapon with GPS-aided inertial guidance and semi-active laser seeker. The weapon is used for high-precision, low-collateral damage attack against light surface targets. The AGM-176A forms part of the PSP employed on AFSCO’s AC-130W Stinger II and AC-130J Ghostrider gunships. Both aircraft employ the aft-firing weapon from ramp-mounted common-launch tubes. The forward-firing AGB-176B is employable on RPAs. USAF issued Raytheon a $105.2 million contract modification to supply additional Griffin missiles in 2018.

Contractor: Raytheon.

First Flight: Feb. 16, 2000 (USAF).

Delivered: September 2001.

IOC: N/A.

Active Variants:
- AGM-176A. Aft-ejecting missile employed as part of the PSP.
- AGM-176B. Forward-firing variant optimized for light aircraft/RPAs.

Dimensions:
- Length 43 in, diameter 5.5 in.

Propulsion: Solid-propellant rocket motor.

Performance: Subsonic, range 12 + miles.

Guidance: GPS/INS/semi-active laser.

Warhead: Blast fragmentation.

Integration: AC-130W (A); MQ-9 (B); planned: AC-130J (A).

CBU-105 SENSOR FUZED WEAPON (SFW)

Wide-area munition

Brief: SFW is a tactical area weapon used against massed stationary or moving armor and ground vehicles. The munitions dispenser contains a payload of 10 BLU-108 submunitions, each containing four skeet-shaped copper disks totaling 40 lethal, target-seeking projectiles. The skeet's active laser and passive IR sensors can detect a vehicle's shape and IR signature; if no target is detected, the warhead detonates at a preset time. Primary targets are massed tanks, armored personnel carriers, and other self-propelled targets. SFW can be delivered from high altitude and in adverse weather. It debuted in combat in Iraq in 2003. DOD ceased cluster munition procurement in 2007 and has only employed the weap-

AGM-88 HIGH-SPEED ANTI-RADIATION MISSILE (HARM)

Air-to-surface anti-radiation missile

Brief: HARM is an anti-radiation, air-to-surface missile highly effective against enemy ground radar. AGM-88 is a joint USAF-Navy weapon, carried by SEAD-dedicated F-16CJs. AGM-88B is equipped with erasable and electronically programmable read-only memory, permitting in-field changes to missile memory. The AGM-88C is the current production model with a more lethal warhead. Raytheon began a HARM Control Section Mod (HCSM) in 2013 to convert current models to more precise AGM-88Fs incorporating improved GPS/INS guidance, anti-countermeasure performance, and reduced risk of collateral damage. The Navy is further retrofitting its missiles with advanced networking, digital homing, and terminal millimeter-wave radar seeker resulting in the AGM-88G Advanced Anti-Radiation Guided Missile (AARGM), USAF is considering using the extended range AARGM as the basis for its next generation Stand-in Attack Weapon (SiAW) to equip the F-35A with SEAD capability.

Contractors: Raytheon (HARM); Northrop Grumman (AARGM).

First Flight: April 1979.

Delivered: 1982-98.

IOC: Circa 1984.

Active Variants:
- AGM-88B. Early production variant.
- AGM-88C. Current production variant.
- AGM-88F. Upgraded variant with greater accuracy and precision.

Dimensions:
- Span 3.7 ft, length 13.7 ft, diameter 10 in.

Propulsion: Thiokol dual-thrust, solid-propellant rocket motor.

Performance: Supersonic, range 30+ miles.

Guidance: Proportional with fixed antenna and seeker head in missile nose.

Warhead: HE fragmentation.

Integration: F-16CJ (Block 50).

AGM-114 HELLFIRE

Air-to-surface guided missile

Brief: Hellfire is a low-collateral damage, precision air-to-ground missile with semi-active laser guidance for use against light armor and personnel. Missiles are used on the MQ-9 Reaper. AFSCO dropped previous plans to integrate the weapons onto its AC-130W gunships in favor of the Small Glide Munition. Hellfire is procured through the Army, and numerous variants are utilized based on overseas contingency demands. An MQ-1 Predator successfully fired an AGM-114 for the first time in February 2000. The combo was employed in combat for the first time in Afghanistan on Oct. 7, 2001. USAF is working to integrate the latest AGM-114R, which replaces several types with a single, multitarget weapon, onto the MQ-9. FY20 funds 3,859 missiles as well as procurement of the next-generation Joint
ons in combat since 2003. CBU-105 was the only standard USAF cluster munition that met the less-than-one-percent failure rate previously mandated by DOD for use beyond 2018. DOD has since reversed course, retaining existing weapons for deterrence on the Korean Peninsula. USAF awarded a $60 million procurement contract for a compliant family of Next Generation Area Attack Weapons (NGAAWs) in 2019. NGAAW will initially be a 500-lb improved-lethality, anti-personnel/materiel weapon, followed by a second, more potent 2,000-lb high-fragmentation warhead.

Contractor: Textron Systems.
First Flight: Circa 1990.
Active Variants:
- CBU-105.
- CBU-97 with WCMD tail kit.
Dimensions: Length 7.7 ft, diameter 15 in.
Performance: Delivers 40 lethal projectiles over an area of about 500 ft x 1,200 ft.
Guidance: IR sensors in each warhead.
Warhead: Shaped charge and blast fragmentation.
Integration: A-10C, B-1B, B-52H, F-15E, F-16C/D, (tested on MQ-9).

CBU-107 PASSIVE ATTACK WEAPON
Wide-area munition

Brief: Passive Attack Weapon is a nonexplosive, kinetic penetrating area weapon for use against sensitive targets. The CBU-107’s penetrator rods limit collateral damage and do not scatter potentially contaminating debris when used against enemy WMD stockpiles. The weapon glides toward its target after release. Before impact, its inner chamber begins to rotate, and projectiles are ejected in rapid succession by centrifugal force, penetrating targets within a 200-ft radius. The weapon contains various-size, penetrating projectiles but no explosive. Full production was completed in six months. The weapon was used during Iraqi Freedom.

Contractors: General Dynamics (kinetic energy penetrator payload and canister); Lockheed Martin (WCMD); Textron (tactical munition dispenser kit).
Active Variant:
- CBU-107A. Centrifugally dispersed, armor-penetrating weapon.
Dimensions: Length 7.7 ft, diameter 15 in.
Performance: Delivers a high-speed volley of nearly 4,000 metal projectiles in three sizes from a single canister; projectiles: 15-inch rods (350), 7-inch rods (1,000), and small-nail size (2,400).
Guidance: Via WCMD.
Warhead: Non-explosive projectiles.
Integration: B-52, F-15E, F-16C/D.

GBU-10/12/49 PAVEWAY II
Air-to-surface guided munition

Brief: Paveway II is a laser-guided, free-fall bomb for use against surface targets at short to standoff range. The kit is a folding-wing version of the earlier fixed-wing Paveway I with seeker and reliability improvements. The recent Paveway II Plus adds a modernized, more precise guidance package. GBU-10 is the Paveway II seeker and tail kit mounted on a 2,000-lb general-purpose bomb and primarily used against nonhardened targets. It is, however, capable of penetration. The GBU-12 uses a 500-lb bomb body and is primarily used against stationary armored targets. GBU-49 is also a 500-lb body, but adds GPS guidance for all-weather precision delivery from 2,500 ft up to 40,000 ft. USAF is procuring up to 400 GBU-49 to provide the F-35A an interim moving target capability until its Block 3F software is fully fielded. An F-35 dropped the weapon for the first time in a test at Eglin on Nov. 7, 2018.

Contractors: Lockheed Martin; Raytheon.
First Flight: Early 1970s.
Active Variants:
- GBU-10. Laser/GPS guided 2,000-lb bomb.
- GBU-12. Laser guided 500-lb bomb.
- GBU-16. Laser guided 1,000-lb bomb.
- GBU-49. Laser/GPS guided 500-lb bomb.
Dimensions: Span 5.5 ft, length approx. 14.8 ft, diameter 18 in (GBU-10); span 4.4 ft, length 10.8 ft, diameter 11-18 in (GBU-12/49).
Performance: CEP 29.7 ft, range 29.7 ft, range about six miles (GBU-10); CEP 29.7 ft, range about six miles (GBU-12/49).
Guidance: Semi-active laser.
Warhead: Mk 84 bomb 2,000 lb (GBU-10); Mk 82 500-lb blast/fragmentation bomb (GBU-12/49).

GBU-24/28 PAVEWAY III
Air-to-surface penetrating glide bomb

Brief: Paveway III is a laser guided free-fall bomb for use against surface targets from medium standoff range. The third-generation laser guided seeker/tail kit package enables greater precision over Paveway II, and its
high-lift airframe enables longer glide slopes for greater standoff employ-
ment. It can be dropped from low, medium, or high altitude and is effective
against a broad range of high-value targets. GBU-24 is fitted to a 2,000-lb
bomb body, with a BLU-109 penetrating warhead. GBU-28 variants are
large 5,000-lb class air-to-ground penetrators initially developed for use
against Iraq’s deeply buried, hardened C2 facilities. The GBU-28B adds
GPS/INS guidance to the existing laser seeker for all-weather targeting. It
entered production in 1999. The GBU-28C adds a more powerful penetra-
ting BLU-122 warhead in addition to the enhanced guidance package. It
entered production in 2005, and quantities are purchased as needed to
replenish and maintain stockpiles.

Contractor: Raytheon.

First Flight: GBU-24 in service May 1985.

IOC: 1998 (GBU-24); 1991 (GBU-28).

Active Variants:

- GBU-28B/B. Laser/GPS/INS guided 5,000-lb penetrating bomb.
- GBU-28C/B. Laser/GPS/INS guided 5,000-lb improved penetrating bomb.

Dimensions: Span 6.7 ft, length 14.4 ft, diameter 18 in (GBU-24); length
approx. 20 ft, diameter 15 in (GBU-28).

Performance: Range more than 11 miles (GBU-24); range more than 5.75
miles (GBU-28).

Guidance: Semi-active laser.

Warhead: BLU-109 2,000-lb bomb (GBU-24); BLU-113 or BLU-122 5,000-lb
bombs (GBU-28).

Integration: B-52, F-15E, F-16C/D (GBU-24); B-2A, B-52, F-15E (GBU-28).

GBU-39 SMALL DIAMETER BOMB I

Guided air-to-surface glide bomb

Brief: SDB is a low-yield, all-weather precision guided munition designed
to limit collateral damage and strike targets from up to 46 miles away.
Experimentation began in 2001, in response to an ACC requirement for
a miniaturized, precision weapon. Boeing was selected to fully develop
and produce the weapon in 2003, and low-rate initial production began in
2005. Its size allows it to be carried in fighter or bomber internal weapons
bays or to increase overall loadout for more independent strikes per sortie.
SDB I employs advanced anti-jam GPS/INS, and target coordinates are
loaded on the ground or received from the aircraft before release. Sev-
eral SDBs can be simultaneously released against multiple targets. The
weapon was first employed by an F-15E over Iraq in 2006. SDB I is a priority
procurement, and Boeing is maximizing production output to replenish
stocks depleted in combat. FY20 funds procure a total of 7,078 weapons.

Contractor: Boeing.

First Flight: May 23, 2003.

IOC: Oct. 2, 2006.

Production: 24,000 (planned).

Active Variant:

Dimensions: Bomb: length 6 ft, width 7.5 in; BRU-61/A carriage (four
bombs) length 12 ft, width 16 in, height 16 in.

Performance: Near-precision capability at standoff range up to 46 miles.

Guidance: GPS/INS.

Warhead: 250-lb class penetrating blast fragmentation munition.

Integration: AC-130W, F-15E, F-16, F-22; planned: A-10, AC-130J, B-1,

GBU-53 STORMBREAKER (SMALL DIAMETER BOMB II)

Guided air-to-surface glide bomb

Brief: StormBreaker (formerly SDB II) is a joint USAF-Navy program to
develop as a low-yield, precision guided munition capable of striking
moving targets in all-weather from up to 46 miles away. Its size allows it
to be carried in fighter or bomber internal weapons bays or to increase
overall loadout to enable more independent strikes per sortie. Several
StormBreakers can be simultaneously released against multiple targets.
SDB II adds a millimeter-wave radar, imaging IR, and semi-active laser
packaged into a tri-mode seeker. The bomb is retargetable after release.
Improvements include reduced susceptibility to countermeasures and
network-enablement through Link 16/UHF data links. LRIP production
began in 2015 and USAF awarded the current LRIP Lot 4 covering 660
weapons in January 2018. SDB II began operational testing in June 2018,
GBU-54 LASER JOINT DIRECT ATTACK MUNITION (LJDAM)

Air-to-surface guided bomb

Brief: LJDAM is a GPS/INS guided, autonomous, all-weather attack weapon for use against fixed and moving targets. It is a joint USAF-Navy development that combines a laser guidance kit with the GPS/INS-based navigation of the existing GBU-38 JDAM. The current LJDAM is a dual-mode 500-lb guided weapon capable of attacking moving targets with precision. It was developed as an urgent operational need, and testing was completed in less than 17 months. It was first delivered in May 2008 and deployed in combat in Iraq three months later. Boeing is also developing GBU-31 and GBU-32 variants.

Contractor: Boeing.

First Flight: 2005.

IOC: 2008.

Active Variant:
- GBU-54 Laser JDAM. Laser/GPS/INS guided 500-lb bomb.

Dimensions: Length (with JDAM and warhead) approx 8 ft.

Performance: Range up to 15 miles.

Guidance: GPS/INS with laser.

Warhead: Mk 82 500-lb munition.

Integration: F-15E, F-16.

GBU-57 MASSIVE ORDNANCE PENETRATOR

Massive PGM

Brief: MOP is a GPS-guided, earth-penetrating strike weapon for use against hard and deeply buried targets. It was developed and tested through a USAF and Defense Threat Reduction Agency partnership in 2004, and is now managed by AFGSC. Flight testing was conducted from 2008 to 2010, when the program transitioned to USAF. A B-2 successfully test-dropped the GBU-57 in 2014, 2015, and 2016. Several B-2s completed a total of four test drops at White Sands Missile Range, N.M., in 2017 validating the effectiveness of mods made under the Enhanced Threat Response IV upgrade. MOP proved effective, clearing the way for potential early fielding, though the Air Force's recommendation is classified. The service is currently validating requirements to expand the weapon's capabilities further. USAF issued a $20.9 million contract in FY18 to procure an undisclosed number of additional GBU-57 for delivery through July 2020. No funds were requested for FY20.

Contractor: Boeing.

First Flight: Classified.

IOC: 2011.

Operator: AFGSC.

Active Variant:
- GBU-57B. GPS-guided 30,000-lb penetrating weapon.

Guidance: GPS.

Warhead: 5,740-lb HE.

Dimensions: Length 20.5 ft, diameter 31.5 in.

Integration: B-2A (tests also conducted on the B-52).
SATELLITE SYSTEMS

ADVANCED EXTREMELY HIGH FREQUENCY (AEHF) SATELLITE SYSTEM

Brief: AEHF provides global, secure, protected, and jam-resistant military communications. It is replacing existing Milstar satellites and operates at a much higher capacity and data rate. It offers secure, anti-jam tactical and strategic communications around the world. AEHF uses cross-linked satellites, eliminating the need for ground relay stations. The program is a collaboration with Canada, the Netherlands, and the United Kingdom. Launch of SV-4 was originally slated for Oct. 17, 2017, but an issue with the system's power regulator prompted USAF to delay launch a year to enable a hardware fix. SV-4 launched on Oct 17, 2018, paved the way for full operational capability declared when the vehicle joined the constellation operationally on May 3, 2019. SV-5 launched Aug. 8, 2019, after a several-month delay due to its launch vehicle, and SV-6 launched from Cape Canaveral on March 26, 2020.

Contractors: Lockheed Martin; Northrop Grumman.
Operator/Location: AFSPC; Schriever AFB, Colo.
First Launch: August 2010.
IOC: 2015.
Design Life: 14 yrs.
Launch Vehicle: Atlas V.
Constellation: Five.
Active Satellites:
• AEHF SV-1. Launched in 2010, on orbit and operational.
• AEHF SV-2. Launched in 2012, on orbit and operational.
• AEHF SV-3. Launched in 2013, on orbit and operational.
• AEHF SV-4. Launched in 2018, on orbit and operational.
• AEHF SV-5. Launched in 2019, on orbit, in testing.
• AEHF SV-6. Launched in 2020, on orbit, in testing.
Dimensions: Length 31 ft, width 98 ft (with full solar array extension).
Weight: 13,400 lb.
Performance: 24-hr low, medium, and extended data rate connectivity from 65 north to 65 south latitude worldwide.
Orbit Altitude: Geosynchronous at 22,000+ miles.
Power: Solar arrays generating 20,000 watts.

DEFENSE SATELLITE COMMUNICATIONS SYSTEM (DSCS)

Brief: DSCS provides high-priority wartime and strategic SHF communications between high-level leadership and deployed forces and ships worldwide. Satellites enable high-data rate, secure, nuclear-hardened, jam-resistant military comms. In addition to joint service command and control, interagency users include the National Command Authority, White House Communications Agency, and Diplomatic Telecommunications Service. The last of 14 DSCS IIIs launched in 2003. AFSPC inactivated its two oldest DSCS satellites, B-12 in July 2014 and DSCS-10 in June 2015. B-12 exceeded its designed life span by 12 years. The final four DSCS satellites received SLEP before launch, providing higher-power amplifiers, more sensitive receivers, and increased antenna connection options. The satellites also carry a single channel transponder to disseminate emergency action and force direction messages to nuclear-capable forces. WGS began augmenting DSCS in 2007 and will gradually replace the constellation.

Contractor: Lockheed Martin.
Operator/Location: AFSPC; Schriever AFB, Colo.
Design Life: 10 yr (III).
Active Satellites:
• DSCS III. Current base on-orbit variant.
• DSCS III. SLEP. Upgrade configuration of last four satellites launched.
Dimensions: Rectangular body 6 x 6 x 7 ft, 38-ft span with solar arrays deployed.

DEFENSE METEOROLOGICAL SATELLITE PROGRAM (DMSP)

Brief: DMSP is tasked with environmental data collection for worldwide, military weather forecasting. It provides timely and high-quality weather information to strategic and tactical combat units worldwide. DMSP uses an operational linescan sensor to image cloud cover in visible and thermal IR and analyze cloud patterns. It is equipped with microwave imagers and sounders and a suite of space environment sensors that provide critical land, sea, and space environment data. Block 5D-3 improved spacecraft bus and sensors for longer and more capable missions. Six operational DMSP satellites now survey the entire Earth four times a day. The oldest operational satellite, DMSP-13, suffered an apparent electrical short and exploded, creating a cloud of debris in space in 2015. DMSP-19 most recently launched in 2014. The vehicle subsequently suffered a power failure in early 2016, rendering it uncontrollable. Data from the craft remains usable until its orbit decays. Congress canceled the DMSP program before the final spacecraft (DMSP-20) could be launched. DMSP-20 was stored, awaiting a launch decision to replace DMSP-19. DMSP-17 ultimately assumed the failed satellite’s coverage, and DMSP-20 went on permanent display at Los Angeles AFB, Calif. USAF is considering requirements for a follow-on system. The service awarded Ball Aerospace a $255.4 million development contract for the Weather System Follow-On-Microwave (WSF-M) as an eventual replacement for DMSP in November 2018.

Contractors: Lockheed Martin; Northrop Grumman.
Operator/Location: National Oceanic and Atmospheric Administration; NOAA Operations Facility, Suitland, Md.
First Launch: May 23, 1962.
IOC: 1965.
Design Life: Five yrs (Block 5D-3).
Launch Vehicle: Delta IV; Atlas V.
Constellation: Five low Earth orbit (LEO).
Active Satellites:
• Block 5D-2. Launched 1982 to 1997; one on orbit but presumed inactive (DMSP-14).
• Block 5D-3. Improved spacecraft bus and sensors for longer, more capable missions.
Dimensions: Length 25 ft (with array deployed), width 4 ft.
Weight: 2,545 lb, incl 772-lb sensor; 2,270 lb with 592-lb sensor payload.
Performance: Polar orbits; covers Earth in about 6 hr; primary sensor scans 1,800-mile-wide area.
Orbit Altitude: Approx 527 miles.
Power: Solar arrays generating 1,200-1,300 watts.
DEFENSE SUPPORT PROGRAM (DSP)

Brief: DSP provides ballistic missile early warning and is a key part of North American and theater early warning systems. It is capable of detecting missile launches and nuclear detonations and was initially meant to watch the Soviet military. It was used extensively in the 1991 Gulf War to detect Iraqi theater missile launches against coalition forces and allies in the region. The 23rd and final DSP satellite launched in December 2007. Block 5 is the latest variant and is more survivable than predecessors. It includes a medium wavelength IR sensor for more mission utility and accommodates 6,000 detectors. Nine Block 5 satellites were deployed between 1989 and 2007. Control of the constellation was consolidated to the new Block 10 Mission Control Station at Buckley in early 2016. SBIRS is integrated with DSP, augments its role, and is designed to eventually replace the constellation on orbit. The constellations jointly enabled early detection of ballistic missiles launched by Iran against U.S. forces at Al Asad AB, Iraq, on Jan. 7, 2020, minimizing casualties.

Contractors: Northrop Grumman (formerly TRW); Aerojet.
Operator/Location: AFSPC; Buckley AFB, Colo.
First Launch: November 1970.
IOC: Circa 1972.
Design Life: Three-year requirement and five-year goal.
Launch Vehicle: Titan IV with inertial upper stage; Delta IV Heavy NSSL.
Constellation: 23 deployed/five operational.
Active Satellites:
- Block 5. Most current on-orbit version.
Dimensions: Diameter 22 ft, height 32.8 ft, with paddles deployed.
Weight: Approx 5,200 lb.
Performance: Uses IR sensors to sense heat from missile and booster plumes against Earth's background.
Orbit Altitude: Geosynchronous at 22,000+ miles.
Power: Solar arrays generating 1,485 watts.

GLOBAL POSITIONING SYSTEM (GPS)

Brief: GPS supplies space-based military and civil radio-positioning for geolocation, navigation, and timing. It is a fundamental enabler of precision bombing, CSAR, mapping, and rendezvous. It provides accurate and uninterrupted 3D (latitude, longitude, and altitude) position, velocity, and time data. GPS Block IIA first launched in 1990. The Air Force decommissioned the final Block IIA, launched to replace original GPS Block I series in 2016. GPS Block IIR and IIR-M (modernized) included 21 vehicles launched between 2005 and 2009. Modernization upgrades included two new signals, enhanced encryption, anti-jam capabilities, and a second civil signal. GPS Block IIF is a follow-on to IIR-M. Upgrades include extended design life, faster processors, and improved anti-jam and accuracy, with a new military signal and a second and third dedicated civil signal. A reserve Block IIA satellite launched in 1993 was reactivated in 2018, to replace an unusable Block IIR satellite launched in 2001. The Space Force decommissioned the last Block IIA satellite in 2020. The last of 12 GPS IIF satellites launched from Cape Canaveral on Feb. 5, 2016. The next generation GPS Block IIIA, currently in production, is expected to improve accuracy, availability, integrity, and resistance to jamming. The newest satellites will add capabilities including nuclear detonation detection and search and rescue. SpaceX was awarded its first National Security Space contract to launch the second GPS IIF on its Falcon 9 booster in May 2018. USAF recently contracted Lockheed Martin to build GPS IIIA vehicles nine and 10 for expected launch in 2022. USAF awarded three companies production-readiness contracts for vehicle 11 and is looking to competitively award a 22-satellite production contract (with added capability) to a single bidder. The first GPS III satellite dubbed “Vespucci” successfully launched on Dec. 23, 2018, and completed on-orbit checks on Jan. 13, 2020. The second GPS III satellite successfully launched Aug. 22, 2019, three launches are slated for 2020 and a total of 10 GPS III satellites are planned. Block III improvements include a steerable, high-power,
anti-jam capability. FY20 funds procure the first GPS Block IIIF satellite which adds additional capabilities, including a hosted search and rescue payload, as well as geographically targetable high-power military signal.

Contractors: Boeing (II, IIA, IIF); Lockheed Martin (IIR, IIR-M, IIIA).

Operator/Location: AFSPC; Schriever AFB, Colo.

First Launch: Feb. 19, 1978.

IOC: Dec. 9, 1993.

Design Life: 7.5 yr (II/IIA); 7.5 yr (IIR/IIR-M); 12 yr (IIF); 15 yr (IIIA).

Launch Vehicle: Delta II, Delta IV, Falcon 9 (planned).

Constellation: 33 spacecraft (not including decommissioned or on-orbit spares).

Active Satellites:
- GPS Block IIR. Launched 1997 to 2004; 11 active.
- GPS Block IIF. Launched in 2010 to 2016; 12 active.
- GPS Block IIIA/IIIF. New generation launched in 2018; two active.

Dimensions: (IIR/IIR-M) 5 x 6.3 x 6.25 ft, span incl solar panels 38 ft; (IIF) 9.6 x 6.5 x 12.9 ft, span incl solar panels 43.1 ft.

Weight: On orbit, 2,370 lb (IIR/IIR-M); 3,439 lb (IIF).

Performance: Orbits the Earth every 12 hr, emitting continuous signals, providing time to within one-millionth of a second, velocity within a fraction of a mile per hour, and location to within a few feet.

Orbit Altitude: 10,988 miles.

Power: Solar panels generating 700 watts (II/IIA); 1,136 watts (IIR/IIR-M).

Spares:
- Boeing (II, IIA, IIF); Lockheed Martin (IIR, IIR-M, IIIA).

Design Life:
- GPS Block IIF: 12 yr
- GPS Block II/IIA: 7.5 yr
- GPS Block IIR/IIR-M: 7.5 yr
- GPS Block IIIA: 12 yr

IOC:

Operator/Location:
- Contractors: Boeing (II, IIA, IIF); Lockheed Martin (IIR, IIR-M, IIIA).

SPACE BASED INFRARED SYSTEM (SBIRS)

Space-based surveillance/missile warning

Brief: SBIRS provides advanced space surveillance and missile warning, battlefield characterization, and technical intelligence gathering. It is the follow-on to the Defense Support Program satellite. The system includes IR sensor payloads on host satellites in highly elliptical orbit (HEO), two IR sensors each on dedicated satellites in geosynchronous Earth orbit (GEO), and ground assets. The HEO sensor detects launch of submarine-launched ballistic missiles (SLBMs) from the North Pole region and can be tasked for other IR detection missions. GEO scanning IR sensor performs the strategic missile warning mission, global technical intelligence, and initial phase for the strategic missile defense mission, providing two times the revisit rate and three times the sensitivity of DSP. USAF announced plans to allow civil use of SBIRS data to aid weather prediction, Arctic ice monitoring, and wildfire tracking. GEO-3 launched into orbit Jan. 20, 2017, after delays to validate the performance of its liquid apogee engine. GEO-4 launched on Jan. 19, 2018. GEO-5 and GEO-6 will be based on a modernized spacecraft and will be launched earlier than planned, in 2021 and 2022 respectively. These satellites will replace the oldest two on orbit. USAF canceled the final two GEO satellites and is shifting funds to develop the Next-Generation Overhead Persistent Infrared (OPIR) system. OPIR is the most ambitious satellite program, totaling $1.4 billion for FY20. The constellation will comprise three GEO satellites and two polar HEO sensors. SBIRS and DSP jointly enabled early detection of ballistic missiles launched by Iran against U.S forces at Al-Asad AB, Iraq, on Jan. 17, 2020, minimizing casualties.

Contractors: Lockheed Martin; Northrop Grumman.

Operator/Location: AFSPC; Buckley AFB, Colo.

First Launch: GEO 1, May 2011.

Constellation: Four GEO sat, two HEO sensors and two HEO on-orbit reserve (hosted).

Active Satellites/Payloads:
- SBIRS GEO-4. Payload operational in 2017; active.
- SBIRS GEO-5. Launched in 2017; active.

Dimensions: 7 x 6.3 x 19.7 ft (GEO).

Weight: 5,603 lb (GEO on orbit).

Orbit Altitude: Geosynchronous and high elliptical.

Power: Solar array, 2,435 watts (GEO), batteries.

MILSTAR SATELLITE COMMUNICATIONS SYSTEM (MILSTAR)

Communications

Brief: Milstar is the joint-service backbone of strategic/tactical DOD communications. It provides encrypted, secure, anti-jam communications around the world and uses cross-linked satellites, eliminating the need for ground relay stations. Block I satellites incorporate a low data rate payload capable of transmitting 75-2,400 bps over 192 EHF channels. Block II satellites carry both the low data rate payload and a medium data rate payload capable of transmitting 4,800 bps to 1.5 Mbps over 32 channels, allowing larger data to be passed more quickly. Interoperable terminals allow third-party land/sea-based units to upload data in real time to cruise missiles or other compatible weapons. Milstar provides continuous coverage between 65 degrees north and 65 degrees south latitude. The systems utilize multiple-redundant command and control for high survivability. The last of six satellites launched in 2003. AEHF will eventually replace Milstar as DOD’s primary satcom and is fully back-compatible with Milstar.

Contractors: Lockheed Martin; Boeing; Northrop Grumman (formerly TRW).

Operator/Location: AFSPC; Schriever AFB, Colo.

Launch Vehicle: Titan IV/Centaur.

Constellation: Five: two Milstar I; three Milstar II.

Active Satellites:
- Block I. Milstar I satellites launched 1994-95.

Dimensions: Length 51 ft, width 116 ft with full solar array extension.

Weight: 10,000 lb.

Performance: Milstar I low data rate (LDR) payload transmitting 75 to 2,500 bps of data over 192 channels of EHF. Milstar II LDR and medium data rate (MDR) payloads, transmitting 4,800 bps to 1.5 Mbps over 32 channels.

Orbit Altitude: Geosynchronous at 22,000+ miles.

Power: Solar arrays generating 8,000 watts.

SPACE BASED SPACE SURVEILLANCE (SBSS)

Orbital surveillance and object identification

Brief: SBSS is designed to track, characterize, measure, and collect optical signatures of Earth-orbiting objects, including space vehicles and debris.
The Missile Defense Agency originally launched SBSS as a technology demonstrator to classify and track ballistic missiles in mid-course flight, before handing it over to AFSPC in 2011. SBSS primarily uses a trainable, ground-controlled Space-Based Visible Sensor to track targets without repositioning. Potential high-end and even kinetic space threats from China and Russia have pushed orbital domain awareness to the top of AFSPC’s priority list. AFSPC is working to extend SBSS service life and tasked one of its experimental Operationally Responsive Space satellites to cover a four-year gap in coverage before it can launch a follow-on spacecraft in 2021. ORS-5 launched Aug. 26, 2017, and is equipped with an optical sensor to provide rapid, continuous scanning to detect movement in geosynchronous orbit. The Space Force is seeking funds for a follow-on satellite to ORS-5 to enhance surveillance. SBSS works in concert with an array of networked, ground-based sensors including the Space Fence wide-area search and surveillance system recently commissioned on Kwajalein Atoll in the Marshall Islands.

Contractors: Boeing (system integration, ground segment, operations, and sustainment); Ball Aerospace (satellite).
Operator/Location: AFSPC; Schriever AFB, Colo.
First Launch: Sept. 25, 2010.
IOC: Aug. 17, 2012.
Design Life: Seven yr
Launch Vehicle: Minotaur IV.
Constellation: One LEO satellite; one LEO augmentation satellite.
Active Satellites:
- SBSS Block 10. Launched in 2010; active.
- ORS-5. Experimental satellite launched in 2017 to augment SBSS; active.
Dimensions: Height approx 10 ft; 10 x 3.2 ft, plus solar panels.
Weight: Approx 2,273 lb.
Orbit Altitude: 390 miles, sun-synchronous orbit.
Power: Gallium arsenide solar cells with lithium-ion batteries.

X-37B ORBITAL TEST VEHICLE

Orbital test

Brief: X-37B is an unmanned experimental Orbital Test Vehicle (OTV) aimed at developing and maturing a reusable space-launch capability and conducting classified, extended, on-orbit missions (experiments and/or launching small satellites). NASA launched the X-37 program in 1999, with the intention of building two demonstrators to validate technologies for both launch/on-orbit flight, and reentry/landing. Only the Approach and Landing Test Vehicle (ALTV) was built before NASA handed over the program to DARPA, which completed ALTV captive-carry/drop testing with the subscale X-40A in 2006. The X-37B is based on NASA’s notional OTV and is boosted into low Earth orbit atop a standard Atlas V or SpaceX Falcon 9 launch vehicle for long-endurance space missions. The vehicle autonomously re-enters the atmosphere upon command from a ground control station, and it recovers conventionally to the runway.

The program’s two test vehicles have successfully completed five orbital missions. The first mission (OTV-1) launched in 2010 and remained on orbit 780 days. The OTV-2 and OTV-3 missions launched in 2011 and 2012, and remained on orbit 468 days and 674 days, respectively. The OTV-4 mission remained aloft for 780 days and made the craft’s first landing at Cape Canaveral on March 25, 2017. The OTV-5 mission marked the type’s first launch atop a SpaceX Falcon 9 on Sept. 7, 2017, setting a new record of 780 days on orbit when it touched down at Cape Canaveral on Oct. 27, 2019. The Space Force will launch its inaugural X-37B mission as a service in 2020.

Contractor: Boeing.
Operator: AFSPC.
First Launch: April 22, 2010.
IOC: N/A.
Launch Vehicle: Atlas V, Falcon 9.
Production: Two.
Inventory: Two.
Operational Location: Cape Canaveral AFS, Fla. (launch/landing); Vandenberg AFB, Calif. (landing).
Active Variant: X-37B. DARPA/USAF-developed Orbital Test Vehicles.
Dimensions: Span 14 ft, length 29.25 ft, height 9.5 ft.
Weight: 11,000 lb at launch.
Propulsion: Single liquid-propellant rocket motor.
Endurance: 718+ days on orbit.
Orbit Altitude: Low Earth orbit (LEO) at 110-500 miles.
Power: Gallium arsenide solar cells with lithium-ion batteries.

Aaron M. U. Church is a freelance aviation writer and Active-duty officer stationed at Yokota AB, Japan. He is a former Air Force Magazine senior editor.