(Original Signature of Member)
114TH CONGRESS H.R.
To secure the United States technological edge in commercial and military aviation.
IN THE HOUSE OF REPRESENTATIVES
Mr. Knight (for himself and Mr. Honda) introduced the following bill; which was referred to the Committee on
A BILL
To secure the United States technological edge in commercial and military aviation.
1 Be it enacted by the Senate and House of Representa-
2 tives of the United States of America in Congress assembled,
3 SECTION 1. SHORT TITLE.
4 This Act may be cited as the "Aeronautics Innovation
5 Act".
6 SEC. 2. FINDINGS.
7 The Congress makes the following findings:
8 (1) Aviation accounts for more than
9 \$1,500,000,000,000 of total United States economic

1	activity annually and is one of the few industries
2	that generates a positive trade balance, including
3	\$82,500,000,000 in 2015 alone.
4	(2) Growth in the commercial aircraft market is
5	projected to offer 8 to 10 trillion dollars in new air-
6	craft sales, parts, and services over the next 17
7	years. International governments are boosting their
8	research and development investments to give their
9	domestic industries competitive advantages in the
10	aircraft market.
11	(3) NASA's aeronautics research and collabo-
12	rative ventures yield innovations that can eventually
13	be utilized in the commercial sector, opening up en-
14	tirely new markets, enabling the United States' avia-
15	tion industry to grow and maintain global competi-
16	tiveness, providing high-quality engineering and
17	manufacturing jobs, and benefitting the quality of
18	life for our citizens.
19	(4) All of NASA's other directorates and capa-
20	bilities, including those in space, depend on research
21	and technology that originated and is maintained in
22	NASA's Aeronautics Centers.
23	(5) Aviation plays a central role in our national
24	security strategy, and our technological advantage

over potential adversaries must be maintained with sustained and focused research and development.

(6) NASA Aeronautics Research Mission Directorate's six strategic thrusts (safe, efficient growth in global operations; innovation in commercial supersonic aircraft; ultra-efficient commercial vehicles; transition to low-carbon propulsion; real-time, system-wide safety assurance; and assured autonomy for aviation transformation) are effective and necessary research areas for the development of next generation aeronautics technology that will preserve the United States' lead in the global aviation industry.

(7) Continued progress in the science and technology of aeronautics is crucial to the United States' sustained economic success and the protection of the United States' security interests at home and around the world, as acknowledged in the 2006 National Aeronautics Research and Development Policy. To ensure Federal efforts remain on a disciplined path to meet national objectives, the Director of the Office of Science and Technology Policy is responsible for the implementation and biennial review of the Nation's aeronautics research and development plan.

1	(8) We need an aeronautics program worthy of
2	the United States of America and capable of meet-
3	ing our 21st century challenges.
4	SEC. 3. DEFINITIONS.
5	In this Act:
6	(1) Administrator.—The term "Adminis-
7	trator" means the Administrator of NASA.
8	(2) Aeronautics strategic implementa-
9	TION PLAN.—The term "Aeronautics Strategic Im-
10	plementation Plan" means the Aeronautics Strategic
11	Implementation Plan issued by the NASA Aero-
12	nautics Research Mission Directorate.
13	(3) Appropriate congressional commit-
14	TEES.—The term "appropriate congressional com-
15	mittees" means the Committee on Armed Services,
16	the Committee on Science, Space, and Technology,
17	and the Committee on Appropriations of the House
18	of Representatives and the Committee on Armed
19	Services, the Committee on Commerce, Science, and
20	Transportation, and the Committee on Appropria-
21	tions of the Senate.
22	(4) NASA.—The term "NASA" means the Na-
23	tional Aeronautics and Space Administration.

1	SEC. 4. EXPERIMENTAL PLANE PROGRAMS.
2	(a) Sense of Congress.—It is the sense of Con-
3	gress that—
4	(1) developing high-risk, pre-competitive aero-
5	space technology for which there is not yet a profit
6	rationale is a fundamental NASA role;
7	(2) near-full-scale to full-scale vehicle flight test
8	experimentation and validation are necessary for—
9	(A) transitioning new technologies to com-
10	mercial and military aeronautics use; and
11	(B) capturing the full breadth of benefits
12	from the Aeronautics Research Mission Direc-
13	torate's investments in priority programs called
14	for in—
15	(i) the National Aeronautics Research
16	and Development Plan issued by the Na-
17	tional Science and Technology Council in
18	February 2010;
19	(ii) the NASA 2014 Strategic Plan;
20	and
21	(iii) the Aeronautics Strategic Imple-
22	mentation Plan;
23	(3) a level of funding that adequately supports
24	full-scale experimentation and related infrastructure
25	must be assured over a sustained period of time to
26	restore NASA's capacity to see legacy priority pro-

1	grams through to completion and achieve national
2	economic and security objectives;
3	(4) NASA should establish a long-term goal of
4	increasing its Aeronautics research spending, over
5	time, to 10 percent of its overall budget; and
6	(5) NASA's gradual completion of Next Gen-
7	eration Air Transportation System tools and tech-
8	nologies will allow NASA to refocus its resources on
9	its traditional studies of the problems of flight with
10	a view to their practical solutions.
11	(b) NATIONAL POLICY.—It is the policy of the United
12	States to maintain world leadership in air power projection
13	and industrial aviation leadership, and to this end one of
14	the fundamental objectives of NASA aeronautics research
15	is the steady progression and expansion of high-speed
16	flight capabilities, including the underlying aerothermo-
17	dynamics, high temperature structures, propulsion, and
18	flight controls science and technologies.
19	(c) Establishment of Programs.—NASA shall
20	establish the following full-scale technology, experimental
21	flight research, multidisciplinary, and revolutionary con-
22	cepts programs to demonstrate innovative advances in aer-
23	onautics and aviation and the feasibility of transformative
24	ideas and concepts:

1	(1) A low-boom supersonic aircraft program, to
2	demonstrate supersonic aircraft designs and tech-
3	nologies that reduce sonic boom noise to levels that
4	will encourage the repeal of domestic and inter-
5	national bans on commercial supersonic flight over-
6	land.
7	(2) Three subsonic flight programs, from
8	among the ultra-efficient X-Plane and hybrid-electric
9	X-Plane programs, each centered around a set of
10	new configuration concepts or technologies deter-
11	mined by the Administrator of NASA, to—
12	(A) enable significant increases in energy
13	efficiency and lower life cycle emissions in the
14	aviation system;
15	(B) demonstrate transformative propulsion
16	systems, as described in the 3rd and 4th stra-
17	tegic thrusts of the Aeronautics Strategic Im-
18	plementation Plan (ultra-efficient commercial
19	vehicles and the transition to low-carbon pro-
20	pulsion);
21	(C) introduce and integrate a progression
22	of technologies and systems enabling trans-
23	formative levels of environmental-related per-
24	formance improvements in the next generations
25	of large civil air transports; and

1	(D) culminate in large-scale X-Plane dem-
2	onstrations.
3	(3) An unmanned aircraft operations program
4	that—
5	(A) researches, develops, and tests capa-
6	bilities and concepts for integrating unmanned
7	aircraft systems into the national airspace sys-
8	tem;
9	(B) advances technologies for a future un-
10	manned aircraft traffic management system for
11	low altitude operations;
12	(C) advances technologies for unmanned
13	vehicles and informs airworthiness requirements
14	for all categories of unmanned systems;
15	(D) benefits industry, especially as oper-
16	ations transition to more autonomous systems;
17	and
18	(E) is consistent with national safety and
19	national security objectives.
20	(d) Program Elements.—For each of the pro-
21	grams established under subsection (c), NASA shall—
22	(1) include development of experimental aircraft
23	(X-Plane), experimental systems (X-System), mul-
24	tiple technologies, and all necessary supporting flight
25	assets;

1	(2) pursue a robust technology maturation and
2	flight validation program that addresses challenges
3	in technology development and maturation;
4	(3) improve necessary facilities and flight test-
5	ing capabilities to support the program;
6	(4) coordinate demonstrations with the aviation
7	community, the armed services, and the Defense Ad-
8	vanced Research Projects Agency; and
9	(5) ensure that the program remains aligned
10	with the Aeronautics Strategic Implementation Plan.
11	(e) Crowdsourcing Pilot Program.—
12	(1) Establishment.—The Administrator shall
13	establish a crowdsourcing pilot program to allow
14	NASA to experiment with the crowdsourcing of early
15	stage experimental aerospace vehicle design work.
16	(2) Mechanism.—As part of such program,
17	NASA shall establish a mechanism from which to
18	crowdsource the preliminary designs of advanced
19	aerospace vehicles that will increase the speed,
20	range, capacity, safety, and affordability of aero-
21	space transportation, such as supersonic or
22	hypersonic aircraft.
23	(3) Private sector experts.—NASA may
24	work with private sector subject matter experts in

1 crowdsourcing to assist in the development of the 2 pilot program. (4) Sunset.—This pilot program shall termi-3 nate 5 years after the date of enactment of this Act. 4 (5) Report.—NASA shall report to the appro-5 6 priate congressional committees at the end of the 7 pilot program to communicate lessons learned under 8 the program and make recommendations for how 9 benefits of crowdsourcing may be more broadly ap-10 plied to NASA objectives. SEC. 5. HYPERSONICS. 12 (a) Sense of Congress.—It is the sense of Congress that the Nation's understanding of hypersonic technologies and weapons will play an increasingly important 14 role in our national security. Maintaining United States preeminence in hypersonics research and development is key to our military's ability to project power and defend the homeland as our adversaries also seek to develop hypersonic capabilities. 19 20 (b) Policy.—It is the policy of the United States to 21 maintain a clear and consistent commitment to a disciplined research, development, and testing strategy to bring hypersonic technology to maturity on a schedule that

sustains the United States strategic military edge.

1	(c) Joint Technology Office on
2	Hypersonics.—Section 218 of the John Warner Na-
3	tional Defense Authorization Act for Fiscal Year 2007
4	(Public Law 109–364; 10 U.S.C. 2358 note), as most re-
5	cently amended by section 1079(f) of the National Defense
6	Authorization Act for Fiscal Year 2016 (Public Law 114–
7	192; 129 Stat. 999), is amended by striking subsections
8	(c) through (e) and inserting the following:
9	"(c) Responsibilities.—In carrying out the pro-
10	gram required by subsection (b), the joint technology of-
11	fice established under subsection (a) shall do the following:
12	"(1) Coordinate and integrate current and fu-
13	ture research, development, test, and evaluation pro-
14	grams and system demonstration programs of the
15	Department of Defense on hypersonics.
16	"(2) Undertake appropriate actions to ensure—
17	"(A) close and continuous integration of
18	the programs on hypersonics of the military de-
19	partments with the programs on hypersonics
20	across the Federal Government; and
21	"(B) that both foundational research and
22	developmental testing resources are adequate
23	and robustly funded, and that facilities are
24	made available in a timely manner to support

1	hypersonics research, demonstration programs,
2	and system development.
3	"(3) Approve demonstration programs on
4	hypersonic systems to speed operational applications.
5	"(4) Ensure that any demonstration program
6	on hypersonic systems that is carried out in any
7	year after its approval under paragraph (3) is car-
8	ried out only if certified under subsection (e) as
9	being consistent with the roadmap under subsection
10	(d).
11	"(5) Develop a well-defined path for hypersonic
12	technologies to transition to operational capabilities
13	for the warfighter.
14	"(d) Roadmap.—
15	"(1) ROADMAP REQUIRED.—The joint tech-
16	nology office established under subsection (a) shall
17	develop and maintain a roadmap for the hypersonics
18	programs of the Department of Defense. The Sec-
19	retary of Defense shall ensure that all elements of
20	the roadmap are updated to reflect changes in na-
21	tional hypersonics assessments and needs not less
22	than once every two years.
23	"(2) Coordination.—The roadmap shall be
24	developed and updated under paragraph (1) in co-
25	ordination with—

1	"(A) the Joint Staff;
2	"(B) the National Security Council;
3	"(C) the Administrator of the National
4	Aeronautics and Space Administration;
5	"(D) the Director of the Office of Science
6	and Technology Policy;
7	"(E) the Director of the Defense Advanced
8	Research Projects Agency; and
9	"(F) the Director of National Intelligence.
10	"(3) Elements.—The roadmap shall include
11	the following matters:
12	"(A) Anticipated or potential mission re-
13	quirements for offensive hypersonics systems
14	and defenses against hypersonics systems of po-
15	tential adversaries.
16	"(B) Short-term, mid-term, and long-term
17	goals for Department of Defense hypersonics,
18	which shall be consistent with the missions and
19	anticipated requirements of the Department
20	over the applicable period.
21	"(C) A schedule for meeting such goals, in-
22	cluding—
23	"(i) the activities and funding antici-
24	pated to be required for meeting such
25	goals; and

1	"(ii) the activities of the National
2	Aeronautics and Space Administration to
3	be leveraged by the Department of Defense
4	to meet such goals.
5	"(D) The research, development, test, and
6	evaluation facilities required to support the ac-
7	tivities identified in subparagraph (C), along
8	with the schedule and funding required to up-
9	grade those facilities, as necessary.
10	"(E) Recommendations on the pro-
11	grammatic resources necessary for each agency
12	to advance the collective goals and priorities of
13	the roadmap in an efficient, sustained manner.
14	"(F) Recommendations to transition
15	hypersonic science and technology to oper-
16	ational capabilities for the warfighter.
17	"(G) Acquisition transition plans for
18	hypersonics.
19	"(4) Submittal to congress.—The Secretary
20	of Defense shall submit to the congressional defense
21	committees—
22	"(A) at the same time as the submittal to
23	Congress of the budget for fiscal year 2018 (as
24	submitted pursuant to section 1105 of title 31,

1	United States Code), the roadmap developed
2	under paragraph (1); and
3	"(B) at the same time as the submittal to
4	Congress of the budget for each even-numbered
5	fiscal year after 2018, the roadmap updated
6	under paragraph (1).
7	"(e) Annual Review and Certification of
8	Funding.—
9	"(1) Annual Review.—The joint technology
10	office established under subsection (a) shall conduct,
11	on an annual basis, a review of—
12	"(A) the funding available for research, de-
13	velopment, test, and evaluation programs and
14	demonstration programs within the Department
15	of Defense for hypersonics, in order to deter-
16	mine whether or not such funding is consistent
17	with the roadmap developed under subsection
18	(d); and
19	"(B) the hypersonics demonstration pro-
20	grams of the Department of Defense, in order
21	to determine whether or not such programs
22	avoid duplication of effort and support the
23	goals of the Department in a manner consistent
24	with the roadmap developed under subsection
25	(d).

1	"(2) Certification.—The joint technology of-
2	fice established under subsection (a) shall, as a re-
3	sult of each review under paragraph (1), certify to
4	the Secretary of Defense whether or not the funding
5	and programs subject to such review are consistent
6	with the roadmap developed under subsection (d).
7	"(3) TERMINATION.—The requirements of this
8	subsection shall terminate after the submittal to
9	Congress of the budget for fiscal year 2021 pursu-
10	ant to section 1105 of title 31, United States Code.
11	"(f) Reports to Congress.—If, as a result of a
12	review under subsection (e), funding or a program on
13	hypersonics is certified under that subsection not to be
14	consistent with the roadmap developed under subsection
15	(d), the Secretary of Defense shall submit to the congres-
16	sional defense committees, at the same time as the sub-
17	mittal to Congress of the budget (as submitted pursuant
18	to section 1105 of title 31, United States Code), a report
19	on such funding or program, as the case may be, describ-
20	ing how such funding or program is not consistent with
21	the roadmap, together with a statement of the actions to
22	be taken by the Department of Defense.
23	"(g) Head of Office.—The Secretary of Defense
24	shall appoint an individual who is a recognized authority
2.5	in the field of hypersonics to serve as the Director of the

joint technology office established under subsection (a). The Director shall serve as the head of the office and as 3 the principal adviser to the Office of the Secretary of De-4 fense on all matters related to hypersonics, reporting di-5 rectly to the Deputy Secretary of Defense. 6 "(h) STAFF.—Secretary of Defense shall fix the compensation of the Director and shall appoint and fix the 8 compensation of such other personnel as may be necessary to enable the joint technology office established under sub-10 section (a) to carry out its functions.". 11 (d) INTERAGENCY Research, DEVELOPMENT, 12 TESTING, AND EVALUATION COORDINATION.—The Director of the Office of Science and Technology Policy, 13 through the National Science and Technology Council, 14 15 shall ensure that Federal hypersonics research, development, testing, and evaluation activities are coordinated 16 and executed pursuant to a disciplined investment plan. 17 18 In doing so, the Director shall— 19 (1) develop and maintain a strategic plan to ad-20 vance the United States hypersonics research, devel-21 opment, test and evaluation goals in an efficient, 22 sustained manner; 23 (2) identify test and evaluation infrastructure 24 critical to hypersonics research, development, test-25 ing, and evaluation and make recommendations to

1	the President for upgrading those facilities as nec-
2	essary;
3	(3) promote policies for a robust hypersonics
4	workforce; and
5	(4) encourage Federal agencies conducting
6	hypersonics research, development, testing, and eval-
7	uation to develop and promote policies that sustain
8	their respective agencies' efforts in implementing the
9	coordinated Federal hypersonics agenda.
10	(e) Air Force Hypersonics Capabilities Acqui-
11	SITION.—The Secretary of the Air Force shall consider
12	findings from all Federal research, development, and dem-
13	onstration projects that relate to hypersonics in making
14	and executing acquisition plans for the Air Force.
15	(f) CIVILIAN HYPERSONICS REPORT.—Not later than
16	120 days after the date of enactment of this Act, NASA
17	shall transmit to Congress a report that—
18	(1) collects broad civilian input identifying ben-
19	efits to the private sector and universities from
20	NASA support for precompetitive hypersonics
21	science; and
22	(2) contains a list of proposed research and
23	technology investments, prioritized on the basis of
24	the national interest that will be served, potential

1	economic impact, and cost of each such technology
2	investment proposal.
3	(g) 21st Century Hypersonics Workforce.—
4	(1) Research and Development Capabili-
5	TIES.—
6	(A) In General.—In order to build and
7	prepare the workforce for hypersonics develop-
8	ment, the Air Force Office of Scientific Re-
9	search, the Office of Naval Research, and the
10	appropriate Department of the Army science
11	and technology entities, in consultation with the
12	Director of the Office of Science and Tech-
13	nology Policy, through the National Science and
14	Technology Council, shall expand, intensify, and
15	coordinate programs and activities with re-
16	search institutions to strengthen their capabili-
17	ties for research and development of
18	hypersonics technology and related education
19	and training.
20	(B) Grants.—To carry out subparagraph
21	(A), the Air Force Office of Scientific Research,
22	the Office of Naval Research, and the appro-
23	priate Department of the Army science and
24	technology entities may make grants to re-
25	search institutions. Each such grant shall be for

1	a period of not to exceed 3 years, and may be
2	extended for one or more additional periods not
3	exceeding 3 years if—
4	(i) the recipient's program has been
5	reviewed and approved by an appropriate
6	technical and scientific peer review group
7	established by the Director of the Air
8	Force Office of Scientific Research, the Of-
9	fice of Naval Research, or the appropriate
10	Department of the Army science and tech-
11	nology entity; and
12	(ii) such group has recommended to
13	the appropriate Director that such grant
14	period should be extended.
15	(2) PILOT PROGRAMS.—Not later than 180
16	days after the date of enactment of this Act, the Di-
17	rector of the Office of Science and Technology Pol-
18	icy, through the National Science and Technology
19	Council, shall recommend to the Air Force Office of
20	Scientific Research, the Office of Naval Research,
21	and the appropriate Department of the Army science
22	and technology entities a series of hypersonics tech-
23	nology prototype projects to be completed over the
24	next 2-5 years that meet research objectives speci-
25	fied in the joint technology office hypersonics road-

1	map developed under section 218(d) of the John
2	Warner National Defense Authorization Act for Fis-
3	cal Year 2007, as added by subsection (c) of this
4	section or the civilian hypersonics report transmitted
5	under subsection (f).
6	SEC. 6. 21ST CENTURY AERONAUTICS RESEARCH CAPABILI-
7	TIES INITIATIVE.
8	(a) Establishment.—The Administrator shall es-
9	tablish a 21st Century Aeronautics Capabilities Initiative,
10	within the Construction of Facilities Account, to ensure
11	that NASA possesses the infrastructure capabilities nec-
12	essary to conduct proposed flight demonstration projects
13	across the range of NASA aeronautics interests. As part
14	of such Initiative, the Administrator shall carry out the
15	following activities:
16	(1) Any investments necessary to upgrade and
17	create facilities for civil and national security aero-
18	nautics research to support advancements in long-
19	term foundational science and technology, advanced
20	aircraft systems, air traffic management systems,
21	fuel efficiency, system-wide safety assurance, autono-
22	mous aviation, and supersonic and hypersonic air-
23	craft design and development.
24	(2) Any measures supporting flight testing ac-
25	tivities, to include continuous refinement and devel-

1	opment of free-flight test techniques and methodolo-
2	gies, upgrades and improvements to real-time track-
3	ing and data acquisition, and any other measures re-
4	lated to aeronautics research support and mod-
5	ernization as the Administrator may consider appro-
6	priate to carry out the scientific study of the prob-
7	lems of flight, with a view to their practical solution.
8	(b) AUTHORIZATION OF APPROPRIATIONS.—For the
9	purpose of carrying out this section, there are authorized
10	to be appropriated to NASA \$40,000,000, to be derived
11	from amounts otherwise authorized to be appropriated to
12	NASA.
13	(c) Report.—
14	(1) Report required.—Not later than 60
15	days after the date of enactment of this Act, the Ad-
16	ministrator shall transmit to Congress a report con-
17	taining a 5-year plan for the implementation of the
18	21st Century Aeronautics Research Capabilities Ini-
19	tiative.
20	(2) Elements.—The report required by this
21	subsection shall include—
22	(A) a description of proposed projects;
23	(B) a description of how the projects align
24	with the ARMD Strategic Implementation Plan
25	or the roadmap developed by the joint tech-

1	nology office on hypersonics under section
2	218(d) of the John Warner National Defense
3	Authorization Act for Fiscal Year 2007, as
4	added by section 5(c) of this Act; and
5	(C) a timetable for carrying out activities
6	and initiatives authorized under this section.